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Cardiovascular disease is the number one cause of
mortality in the United States. Atherosclerosis, the
primary etiology of cardiovascular disease is hypoth-
esized to be a time-dependent response to arterial in-
jury. Although risk factors for atherosclerosis are sys-
temic in nature, certain arteries (e.g., coronary arteries)
are more susceptible to plaque formation than others.
The heterogeneous distribution of atherosclerosis in the
vasculature is thought to be related to biomechanical
factors. A review of the relevant pathological features of
atherogenesis and how physiologically-consistent me-
chanical stimuli can impact those processes supports
this notion. However, specific investigations geared to-
ward finding the mechanistic link between mechanical
stimuli and early atherogenic processes are required to
differentiate those stimuli that facilitate and those that
inhibit atherogenesis. Such knowledge is required for
intelligent direction in the search for potential targets
for clinical intervention. © 2007 Elsevier Inc. All rights reserved.
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INTRODUCTION

In the United States cardiovascular disease (CVD)
currently afflicts over 70 million people and claims
almost a million lives each year [1]. The most promi-
nent cardiovascular diseases, heart disease and stroke,
account for almost 40% of all deaths and an estimated
economic burden of 394 billion dollars in 2005 [2].
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Atherosclerosis, the primary etiology of CVD, is char-
acterized by intimal plaques that form as a time-
dependent response to chronic arterial injury [3]. The
mechanism of the vessel response to this insult is not
well characterized but it is clear that the result is an
atherosclerotic plaque with the potential to rupture,
thrombose, and occlude the injured artery, leading to
the loss of blood flow to vital organs such as the heart
and brain [4]. Current therapies for CVD are directed
at the revascularization of occluded blood supplies or
the reduction of risk factors associated with atheroscle-
rosis (e.g., dyslipidemia, hypertension, diabetes, and
smoking). These approaches have led to modest reduc-
tions in mortality for coronary heart disease [5]. Un-
fortunately, this trend is leveling off, demonstrating a
lack of understanding of the true pathogenic mecha-
nisms of the disease [6]. That is, known risk factors
do not completely determine the probability of disease,
and revascularization merely slows the inevitable.
Similar therapies have not been as successful in the man-
agement of stroke, as indicated by the little change in
mortality rate over the same time period, further demon-
strating the need to better understand the pathogenesis
of atherosclerosis [6]. With the aging population, the
prevalence of CVD will continue to increase unless a
more basic understanding of the primary causes and
pathogenesis of atherosclerosis is reached. Such an
understanding would certainly lead to new therapies
directed at prevention of those primary causes and
halting the pathogenic process.

Possible contributors to the development of athero-
sclerosis can be categorized as biochemical (e.g., lipids)
or biomechanical (e.g., hypertension). The most note-
worthy biochemical agent associated with atherosclero-
sis is low-density lipoprotein (LDL) [7, 8]. However, LDL,

like other documented risk factors, provides a systemic
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type stimulus while atherosclerosis is a highly local-
ized, heterogeneous disease predominately affecting
the coronary arteries, infrarenal abdominal aorta, and
carotid bifurcation, while sparing the thoracic aorta
and arteries of the upper extremities [9]. On the other
hand, biomechanical forces are not necessarily sys-
temic and vary greatly with anatomical location. The
complex biomechanical milieu of the vasculature is an
area of intense research. There is a preponderance of
data to suggest that these complex biomechanical stim-
uli play a pivotal role in the location-specific develop-
ment of atherosclerosis. In other words, biomechanical
forces (depending on their magnitude, frequency, direc-
tion, etc.) either facilitate or protect against the sys-
temic insults provided by the above mentioned risk
factors. This paper extends previous reviews of the
mechanopathobiology of atherosclerosis by going be-
yond the observational correlations between local he-
modynamics and atherosclerotic lesion localization.
This review will articulate how vasculature-specific
mechanical stimuli can affect known atherogenic
processes. Furthermore, we will demonstrate the
need for more rigorous mechanistic studies that pro-
vide a framework for mapping a biomechanical stim-
ulus to a well-defined spectrum spanning atheropro-
tective to atherogenic. First, it is prudent to
summarize the relevant, known pathobiological fea-
tures of atherosclerosis.

RELEVANT PATHOLOGICAL FEATURES
OF ATHEROGENESIS

The development of atherosclerotic plaques has been
hypothesized to be a “response to injury” to the vessel
wall [10]. This injury is usually a chronic low level
insult to the endothelial or smooth muscle cells of the
arterial wall manifesting itself in endothelial dysfunc-
tion [11]. This leads to, among other things, lipid ac-
cumulation [12] and leukocyte adhesion and infiltra-
tion [13–17] (Fig. 1). Therefore, any investigation of the
potential mitigating effects of biomechanics in athero-
genesis should be made with respect to these pathobio-
logic mechanisms.

Endothelial Dysfunction

The endothelium has three important functions
that are particularly relevant to atherogenesis: (1)
maintenance of a selectively permeable barrier be-
tween the intravascular space and the tissue space,
(2) ability to modify and transport lipoproteins into
the vessel wall, and (3) provision of a nonadherent
surface for leukocytes [18]. In accordance with the
response to injury hypothesis, loss of these functions
can be the most preliminary event in atherogenesis
[11]. Injurious agents lead to inflammatory re-

sponses that ultimately cause endothelial cell (EC)
death through apoptosis [19]. Russell Ross postu-
lated that if the injury is chronic, the remaining
viable ECs in the vessel wall will proliferate (to heal
the wound) until they reach senescence, at which
time the wound will not heal properly resulting in
increased convection of macromolecules (e.g., LDL)

FIG. 1. The response-to-injury hypothesis of atherosclerosis.
Several different sources of injury to the endothelium (e.g., oxLDL,
mechanical, homocysteine, immunological, toxins, virus, etc.) can
lead to endothelial cell dysfunction. One of the parameters associ-
ated with endothelial cell dysfunction is increased adherence of
monocytes/macrophages and T lymphocytes (top right). These cells
then migrate between the endothelium and localize subendotheli-
ally. The macrophages become large foam cells because of lipid
accumulation and, with the T cells and smooth muscle, form a fatty
streak (middle right). As the lesions accumulate more cells, and the
macrophages scavenge the lipid, some of the lipid-laden macro-
phages may emigrate back into the bloodstream by pushing apart
the endothelial cells. On doing so, those sites where blood flow is
irregular (e.g., branches and bifurcations) with eddy currents and
back currents, may become thrombogenic sites that lead to formation
of platelet mural thrombi (bottom). Ultimately, the formation and
release of numerous growth-regulatory molecules and cytokines from
a network established between cells in the lesion consisting of acti-
vated macrophages, smooth muscle, T cells, platelets, and endothe-
lium lead to progression to a fibrous plaque or advanced, complicated
lesion (middle left). Each of the stages of lesion formation is poten-
tially reversible if the injurious agents are removed or when protec-
tive factors intervene to reverse the inflammatory and fibroprolifera-
tive processes. Cell color coding: smooth muscle (blue), endothelium
(red), macrophage (violet), T cell (pink), and platelet (green). Figure
reproduced with permission from Macmillan Publishers Ltd [11].
from the circulation to the vessel wall [11] (Fig. 1).
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Indeed, endothelial cells of vascular lesions have
been shown to have shortened telomeres indicating a
senescent phenotype [20].

Lipid Accumulation

Lipid accumulation is a major manifestation of the
vascular response to injury, and there are three means
by which this occurs. First, dysfunctional ECs lose
their selective barrier function. Illustrating this is the
observation that convection of horseradish peroxidase
from the plasma to the intima is increased in rats with
spontaneous hypertension (a well-known chronic arte-
rial insult and risk factor for atherosclerosis) [21].
Since the permeability of the internal elastic lamina
remains relatively unchanged with hypertension, mac-
romolecules accumulate in the intima [21]. An intact
endothelium minimizes this effect, while a chronically
injured endothelium amplifies it [21]. In addition, con-
fluent monolayers of endothelial cells exposed to
atherogenic levels of LDL show a dose-dependent in-
crease in macromolecular permeability [22]. The effect
is even more pronounced when the lipids are oxidized,
as demonstrated by Rong et al. [23]. They showed that
injection of cholesterol oxidation products in rabbits
resulted in accumulation of those products in the aortic
wall and increased vascular permeability and accumu-
lation of lipids and macromolecules even under normo-
cholesterolemic conditions [23]. Similar results have
been seen for endothelial dysfunction induced by nico-
tine and streptozotocin induced diabetes [24, 25].

Second, EC dysfunction leads to altered expression
of lipoprotein receptors used to internalize and modify
various lipoproteins. Certain lipoproteins, specifically
oxidized LDL, perpetuate the insult by activating ECs
and trigging the inflammatory cascade [26]. Sawamura
et al. identified the lectin-like low-density lipoprotein
receptor-1 (LOX-1) specific for oxidized LDL (ox-LDL)
[27]. The modification of native LDL to ox-LDL is a
result of oxidative stress (a common manifestation of
chronic insult) on ECs and macrophages [28]. Binding
and internalization of ox-LDL by LOX-1 on ECs can
stimulate the production of monocyte chemotactic
protein-1 (MCP-1) and increase monocyte adhesion
[29] as well as trigger the apoptotic cascade [30].
LOX-1 mRNA is positively regulated by its injurious
ligand ox-LDL in a concentration-dependent manner
[31, 32], illustrating the role of EC dysfunction in the
binding and internalization of ox-LDL. The results of
several other studies also support this notion. For ex-
ample, lysophosphatidylcholine, a major component of
ox-LDL that has been implicated in atherogenesis [33–
35], induces mRNA and protein expression of LOX-1 in
cultured ECs [31]. Similarly, tumor necrosis factor-
alpha, which has been shown to be increased in ath-
erosclerosis [36, 37], induces a concentration depen-

dent increase in LOX-1 expression [38]. There is also a
complicated crosstalk between angiotensin II, which is
known to cause EC dysfunction [30, 39], and LOX-1.
That is, angiotensin II induces LOX-1 mRNA and pro-
tein expression [30] and ox-LDL up-regulates angio-
tensin II receptors [40]. Although originally discovered
as an endothelial scavenger receptor, LOX-1 has also
been shown to be expressed by macrophages and
smooth muscle cells (SMCs) where it contributes to
foam cell formation [41]. In vivo studies demonstrating
LOX-1 expression in balloon injury [42] and vein graft
[43] models of atherosclerosis lend even greater valid-
ity to the role ox-LDL accumulation via LOX-1 in ath-
erosclerotic processes. Figure 2 illustrates the multi-
faceted role of LOX-1 in atherosclerosis [44].

A third means by which lipid accumulation may oc-
cur in response to vessel injury is that once lipids have
been transported into the subintimal space, they are
retained there by SMCs and macrophages that ingest
lipoproteins (e.g., ox-LDL) via scavenger receptors [45,
46]. Since these receptors are not down-regulated by
increasing intracellular concentrations of cholesterol,
these cells continue to accumulate lipid and become
foam cells [47, 48]. In addition, SMCs in atherosclerotic
lesions undergo a phenotypic modulation from a con-
tractile to a synthetic phenotype [49, 50]. Synthetic
SMCs have a decreased cholesteryl esterase activity
compared with contractile SMCs and therefore cannot
metabolize cholesterol which leads to even more lipid
accumulation [51].

Inflammatory Cell Infiltrate

Atherosclerosis has been described as an inflamma-
tory process [3] in that a major manifestation of the
“response to injury” is leukocyte adhesion and infiltra-
tion. Mononuclear leukocytes have been identified in
lesions in various stages of atherosclerosis [10, 52, 53].

FIG. 2. LOX-1 expression and activation has been demonstrated
from the beginning of atherosclerosis (such as endothelial activation
and apoptosis) to the culmination into an acute event (such as plaque
rupture). Figure reproduced with permission from European Society
of Cardiology [26].
Davies et al. demonstrated this infiltration process in
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human coronary arteries with known atherosclerosis
via scanning electron microscopy [13]. Monocytes and
T lymphocytes adhere to the luminal surface of an
artery where the endothelial layer is altered. Once
there, they spread, migrate along the surface, and then
extravasate through the endothelium into the suben-
dothelial intimal space. This process is mediated
through a variety of chemokines that allow these in-
flammatory cells to “home” to regions of insult or injury
[54] and adhesion molecules that provide the necessary
contacts for the cells to attach and migrate from the
vascular lumen into the vessel wall [55].

Chemokines

The role of chemokines in inflammatory reactions is
to become immobilized to the endoluminal surface of
arteries, where they are presumed to enhance integrin
adhesiveness and mediate leukocyte arrest and firm
adhesion [56, 57]. In addition, they have been shown to
promote transendothelial migration of leukocytes [58,
59]. The inflammatory component of atherosclerosis is
demonstrated by the observation that MCP-1 is ex-
pressed on the luminal surface of human atheroscle-
rotic lesions [60], and by ECs and SMCs in early and
advanced atherosclerotic lesions [60–63]. Also, athero-
genic agents such as minimally modified LDL [64], and
lysophosphotidylcholine [65] can induce the transcrip-
tion of MCP-1 mRNA in ECs. IL-8 is another chemo-
kine with an established role in atherosclerosis [66]. It
has been shown to arrest monocyte rolling and induce
firm adhesion in a dose-dependent manner on EC
monolayers under flow conditions [67, 68].

Adhesion Molecules

Adhesion molecules related to the inflammatory pro-
cess of atherosclerosis can be grouped into two categories,
namely the selectins and the immunoglobulin adhesion
molecules. Selectins are adhesion molecules that provide

FIG. 3. Schematic representation of leukocyte rolling, adhesion,
and transmigration across the endothelium and the cellular adhe-
sion molecules involved in these processes. Figure reproduced with

permission of Blackwell Publishing [210].
a loose attachment for leukocytes that allow them to
roll along the luminal surface [69] (Fig. 3), and include
P-selectin, E-selectin, and L-selectin. L-selectin is con-
stitutively expressed in leukocytes [55]. E-selectin is
expressed in activated ECs but its role in atheroscle-
rosis has not been well established [55]. P-selectin is
not constitutively expressed by ECs but is expressed in
ECs overlying active atherosclerotic plaques [70]. In
addition, P-selectin is focally expressed in lesion prone
areas of rabbit aortas after one week of an atherogenic
diet [71, 72]. This expression preceded macrophage
infiltration, indicating P-selectin’s role in monocyte re-
cruitment [55, 71, 73].

Immunoglobulin adhesion molecules allow leuko-
cytes to firmly adhere to the endothelium and extrav-
asate into the vessel wall (Fig. 3) and include intracel-
lular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule-1 (VCAM-1). ICAM-1 is detected on
ECs of atherosclerotic lesions and is increased by in-
jury [74], whereas normal ECs show little expression
[70, 75]. VCAM-1 is expressed in ECs overlying lipid
containing human atherosclerotic lesions [76]. Like
P-selectin, VCAM-1’s involvement in monocyte recruit-
ment has been demonstrated by the fact that its ex-
pression was seen in lesion prone areas, 1 wk after the
onset of atherogenic diet in rabbits and prior to mac-
rophage appearance [55, 71, 73]. Furthermore, expres-
sion of VCAM-1 is modulated by lipid-based injury;
LDL can induce its expression in human coronary ar-
tery ECs [77]. The more atherogenic lipoprotein, ox-
LDL, up-regulates ICAM-1 [78], and enhances tumor
necrosis factor-alpha induced expression of VCAM-1
and ICAM-1 in human arterial ECs [79].

ROLE OF BIOMECHANICS IN ATHEROSCLEROSIS

Established risk factors for atherogenesis (e.g., hy-
pertension and dyslipidemia) are systemic in nature
and therefore cannot account for the fact that certain
arteries such as the coronary arteries, carotid bifurca-
tion, and infrarenal abdominal aorta are more suscep-
tible to atherosclerosis than others [9]. Furthermore,
the spatial distribution of atherosclerosis within the
highly susceptible coronary arterial tree is heteroge-
nous [80–84]. Evidence suggests that biomechanical
forces could account for this heterogeneity [81, 85–87]
by providing a facilitating or protective effect for the
various systemic risk factors. This section will examine
the current understanding of the relationship between
biomechanical stimuli and atherogenesis with respect
to the pathobiological processes discussed above. First,
a brief description of the vascular biomechanical envi-
ronment is provided.

Biomechanical Environment of the Vasculature

The cells (i.e., EC and SMC) of the vasculature live in

a dynamic mechanical environment due the hemody-
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namics of blood flow as well as the movement of the
surrounding tissue beds. Mechanical stimuli seen by
cells of a blood vessel include shear force due to contact
with blood flow, strain due to pressure distension of the
diameter of the vessel, and strain due to mural defor-
mation of a vessel by its tethering to a surrounding
tissue bed. Physiological arterial shear stress magni-
tude ranges from 0 to 30 dyne/cm2 during a cardiac
cycle [88, 89]. In addition the direction of the shear
changes due to blood flow reversal leading to oscilla-
tory shear stress. The time average mean shear stress
and amplitude of the oscillation are dependent upon
anatomical location. Circumferential strain due to
pressure distention ranges from 5 to 20% depending on
arterial size and location [90]. While every major ar-
tery in the body experiences these two mechanical
stimuli, several other arteries also experience extrane-
ous mechanical deformations due to their tethering to
surrounding tissue beds. The coronary arteries are by
far the most well-known example of this as described in
the following section. Although less well studied, there
are other examples of arteries that undergo tissue bed-
induced deformations. The renal arteries have been
shown to have cyclic changes in curvature due to kid-
ney movement caused by respiration [91]. Bending in
the femoral arteries has been shown to induce spiral
secondary flows indicating the interrelated nature of
the solid and fluid mechanics [92]. Just recently, Cin-
thio et al. quantified the degree of longitudinal motion
of several arteries (i.e., aorta, carotid, popliteal, and
brachial arteries). They showed significant variation in
the pattern of longitudinal motion over the cardiac
cycle among different anatomical locations as well
as subjects. Furthermore, they demonstrated that the
intimal/medial portion of the arteries had a different
longitudinal motion pattern than the adventitial por-
tion, suggesting massive shear strains between the
media and adventitia. This work provides another an-
atomically heterogeneous mechanical stimulus that
could mitigate the development of atherosclerosis.

Coronary Biomechanical Environment

The mechanical environment of a coronary artery is
complex and spatially variable. Using flow visuali-
zation and high-speed cinemicrographic techniques,
Asakura and Karino showed that the flow patterns in the
left and right coronary circulation are complicated with
distinct regions of disturbed flow, recirculation, and sec-
ondary flows [80]. Velocity and wall shear stress can vary
greatly with both longitudinal and circumferential posi-
tion in the coronary arteries [80, 93–96]. In general, ar-
terial geometry has been shown to be a key component
in the distribution of shear stress in the coronary vas-
culature (Fig. 4) [97].

The effect of geometry on arterial biomechanics is

further complicated by the fact that it is dynamic. That
is, the geometry of a given coronary artery changes in
time due to its firm attachment to the epicardial sur-
face of a beating heart (Table 1) [98–101]. Gross et al.
showed that curvature (inverse of the radius of curva-
ture) in coronary arteries ranged from 0.25 to 1.8 cm�1

[100]. The degree of twisting and the rate of change of
curvature were also shown to be highly position-
specific [101]. In addition, coronary vessels undergo 4
to 6% cyclic longitudinal stretch during each cardiac
cycle [98, 99]. These cyclic motions of bending, stretching,
and twisting as well as translational displacement can
alter blood flow and, therefore, shear stress [102, 103].
Those dynamic motions can also lead to complex mural
deformations and stress patterns in the arterial wall.
These studies demonstrate the highly variable and
complex biomechanical environment of the coronary
arteries, which is depicted schematically in Fig. 5. This
environment is sufficiently complex to provide both
atherogenic and atheroprotective stimuli, which could
account for the heterogeneous distribution of athero-
sclerotic lesion in the coronary vasculature despite sys-
temic risk factors. We now summarize some key stud-
ies that suggest that biomechanical stimuli play a role
in the location-specific pathogenic processes of athero-
genesis.

Effects of Biomechanics on Atherogenic Response of
Vascular Cells and Tissue

Mechanical forces and deformations are an impor-
tant component of the vascular environment. These
forces are sensed and communicated to the interior of

FIG. 4. Contour plot of normalized wall shear stress (WSS) mag-
nitude in a right coronary artery model for steady flow with a
Poiseuille inlet velocity profile. Note the alternating regions of high
and low WSS on the model walls. WSS values are normalized by the
inlet Poiseuille value. Figure reproduced with kind permission of
Springer Science and Business Media [97].
vascular cells via several different signaling pathways.
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The mechanism of mechanotransduction is an area of
intense research and could provide numerous chemo-
therapeutic targets. A detailed discussion of the vari-
ous mechanosignaling pathways is beyond the scope of
this review. Regardless, changes in mechanical forces
alter cell signaling, which in turn can potentially lead
to endothelial activation and/or dysfunction leading to
lipid accumulation and inflammatory activation. The

TAB

Dynamic Coronar

Motion parameter Explanation

Displacement (cm) 3D displacement of a materia
Strain Relative length change of a p
Curvature (C) (cm�1) Inverse of the radius of curv
Bending (cm�1) Rate of change of curvature
Pulse curvature (cm�1) Cmax�Cmin over cardiac cycle
Torsion (T) (cm�1) Shear strain caused by a tor
Twisting (cm�1) Rate of change of torsion
Pulse torsion (cm�1) Tmax�Tmin over cardiac cycle

* Table adapted with kind permission of Springer Science and Bu
† Mean values for four patients’ right coronary arteries (RCA).
‡ Mean values for eight patients’ left anterior descending arteries
§ Values for bending and twisting represent total bending and twis

of (cm�1s�1).

FIG. 5. Schematic of vascular mechanical stimuli including: (A)
flow-induced shear stress, (B) pressure-induced circumferential dis-
tention and the tissue bed-induced deformations of (C) longitudinal

stretching, (D) twisting, and (E) bending.
mechanosensitivity of each of these pathogenic pro-
cesses and their associated molecules (described in de-
tail above) is described below and summarized in Table 2.

Endothelial Dysfunction

Mechanical forces have been shown to lead to EC
dysfunction characterized by EC proliferation, apopto-
sis, and increased permeability. One of the most stud-
ied mechanical forces with respect to EC dysfunction is
shear stress. Permeability of the vessel wall is in-
creased by cyclic changes in shear stress [104–106] and
high spatial shear stress gradients [107], but decreased
by increasing levels of shear [105]. The increase in EC
permeability in response to shear forces is potentially
mediated through changes in endothelial cell-cell con-
tacts [108, 109]. That is, increasing magnitude and
duration of shear stress on ECs leads to enhanced
expression of proteins associated with both tight and
adherens junctions [109], while exposure to low shear
stress causes tight junctions to become discontinuous
(i.e., leaky) [108]. This suggests that low or oscillating
shear levels facilitate systemic atherogenic factors
(e.g., LDL). This is also supported by the observation
that low shear stress impairs endothelial wound heal-
ing while high shear stress enhances wound repair
through increased cell spreading and migration
[110]. Shear stress can also alter EC proliferation
[106, 110 –115] and apoptosis [116 –120], depending
on the magnitude and spatial and time variation of the
shear stress. For instance, ECs exposed to 10 to 15
dynes/cm2 of shear stress and laminar flow conditions
have little or no proliferation or apoptosis [106, 118, 119,
121–123]. On the other hand, low shear stress can
cause increased proliferation and apoptosis, hence in-
creased EC turnover [14, 114, 115, 124, 125].

Based on the above data relating shear stress to

1

rtery Geometry*

Mean value for
RCA†

Mean value for
LAD‡

oint 6.00 � 2.59 2.91 � 0.74
t 0.054 � 0.020 0.040 � 0.018
re 0.39 � 0.10 0.48 � 0.17

0.95 � 0.35§ 1.16 � 0.44
0.33 � 0.14 0.39 � 0.12
1.50 � 0.60 2.69 � 0.79

12.13 � 5.50§ 26.35 � 14.60
4.45 � 2.59 8.65 � 5.08

ess Media [99].
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rather than instantaneous rates of change, which would have units
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shear stress onto an atherogenicity spectrum can be
seen in Fig. 6. Of course, this scheme must be evalu-
ated with caution since the majority of these studies
have been performed in two dimensional monoculture

TAB

Summary of Atherogenic Process

Pathogenic process Role in atherogenesis

Proliferation Initial response to endothelial injury
(i.e., wound healing)

Apoptosis Cause of endothelial dysfunction; found in
atherosclerotic lesions

Permeability Allows macromolecular (e.g., lipids) uptake
into vessel wall

LDL uptake Can cause endothelial injury, lipid
accumulation, and inflammatory activation

LOX-1 expression Cellular receptor for ox-LDL uptake
Cholesteryl esterase Allows macrophages and SMCs to digest

cholesterol Dysfunction or loss of
expression can lead to cholesterol
accumulation and foam cell formation

MCP-1 Leukocyte chemoattractant

IL-8 Leukocyte chemoattractant; facilitates TEM
P-selectin Leukocyte rolling

ICAM-1 Leukocyte arrest and activation
VCAM-1 Leukocyte arrest and activation

*2 denotes decrease or downregulation.
† �’s denotes changes in.
#1 denotes increase or upregulation.
** SS denotes shear stress.
## CS denotes cyclic stretch.

FIG. 6. Pictorial representation of how the biomechanical stim-
ulus shear stress maps to a continuum between atheroprotection and
atherogenicity. If the atherogenicity of shear stress can be charac-
terized by the level endothelial cell dysfunction a map can be drawn
relating a given type of shear stress (e.g., low magnitude, high
oscillation) to its potential to facilitate atherogenesis. Further re-
search is required to provide quantification to this representation.
Such information could help to determine thresholds for atherogen-

esis or atheroprotection.
conditions. SMC/EC coculture has been shown to dra-
matically alter the proliferative response of ECs to
various stimuli including shear stress [126, 127]. The
response is also dependent upon the culture media
[128], substrate [128], and type of cells used (venous
versus arterial) [129]. A more accurate description of
the mitigating effects of shear stress on atherogenesis
requires continued research using more physiological
model systems such as three-dimensional EC/SMC co-
culture [126, 127], ex vivo experimental preparations
[130, 131], and in vivo trials. This type of paradigm
could be extended to all combinations of mechanical
stimuli and atherogenic processes as discussed below.
Such a description could provide intelligent direction
in the search for therapeutic targets.

Other mechanical stimuli that can potentiate or in-
hibit EC dysfunction manifested by proliferation, apo-
ptosis, and increased permeability are cyclic stretch
and hydrostatic pressure. More specifically, physiolog-
ical levels of cyclic stretch can increase EC prolifera-
tion [90, 132, 133], suppress apoptosis [122], and pro-
vide an atheroprotective effect for the endothelium

2

and Their Mechanosensitivities

Mechanosensitivity

rupt 2* SS** can 1# EC## proliferation [115]; 1 SS 2 DNA
ynthesis [204]; Turbulent flow 1 EC turnover [106, 112]; 1 SS

EC proliferation [114]; 1 CS 1 EC proliferation [132, 205];
ysiologic SS and CS suppress apoptosis in ECs [118, 119, 121–123,
35]; 2 SS induces EC apoptosis [125]; 1 CS 1 EC apoptosis
134]; Turbulent flow 1 EC turnover [112]
CS 1 permeability [134]; 1 SS 2 permeability [105]; 1 SS
radient 1 permeability [107]; Cyclic �’s† SS 1 permeability
104–106]; 1 Transmural pressure 1 permeability [107, 137,
51, 206]
S can 1 cholesterol permeability [108, 109, 207]; �’s pulse
ressure and flow alter cholesterol uptake [153]; 1 Pressure alters
DL permeability [151]; 1 SS 1 Binding, internalization and
ptake of LDL [145–147]

SS 1 LOX-1 mRNA and protein [144]
C phenotypic modulation, which is mechanosensitive (see text),
an cause 2 in cholesteryl esterase activity [155–159]

SS 2 MCP-1 expression [165]; 1 CS 1 MCP-1 expression
167–169]
SS 2 IL-8 expression [161, 162, 208]
hreshold level of is shear required for P-selectin rolling function
172]
SS 1 ICAM-1 expression [174–176, 179, 209]
SS 2 VCAM-1 expression [177, 178, 209]
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[134]. Although the increased proliferation is a contra-
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dictory response for atheroprotection, there does seem
to be an analogous effect of moderate levels of cyclic
stretch to the protective effect of moderate levels (10 to
15 dyne/cm2) of shear stress [118, 119, 121–123, 135,
136]. On the other hand, supraphysiological levels of
cyclic stretch can cause increased permeability and
apoptosis [134]. That hydrostatic or transmural pres-
sure is also an important determinant of endothelial
dysfunction is suggested from the well-known fact that
hypertension is a risk factor for atherosclerosis. In-
deed, increased pressure has been implicated in mass
transport of material (e.g., lipids) from the lumen to
the vessel wall [137], as well as alterations in EC
proliferation and apoptosis [138].

Lipid Accumulation

Accumulation of lipids in atherogenesis is also mod-
ulated by mechanical forces. For instance, lipids accu-
mulate at the luminal surface in areas where blood
flow velocity and wall shear stress are low [109, 139]
and where particle residence times and the permeabil-
ity of the endothelial layer are enhanced (a known
manifestation of EC dysfunction as detailed above)
[139–143]. Lipid accumulation is also mediated by
shear-sensitive receptors. The expression of LOX-1, a
key modulator of LDL-induced endothelial insult and
lipid accumulation (recall Fig. 2), has been shown to be
regulated by physiological levels of shear stress [144].
Also, the binding, internalization, and degradation of
unmodified LDL by the vessel wall is highly dependent
on shear stress [145–147]. Cyclic strain and pressure
also effect lipid accumulation. For example, cyclic
stretch causes an increase in reactive oxygen species
[148] and oxidative stress [149] in ECs, which increase
the oxidation of LDL and increase EC permeability and
uptake of ox-LDL. Hypertension (i.e., increased in-
traluminal pressure) has been predicted to increase
convective pressures or the driving force for the trans-
port of material (e.g., LDL) from the lumen to the
vessel wall [150–152]. This is substantiated by data
showing that increased transmural pressure leads to
increased filtration velocity [139] and uptake of choles-
terol [153]. Cytoskeletal rearrangement has been im-
plicated as a factor in both shear and stretch mediated
LDL accumulation [154].

Loss of expression of cholesteryl esterase by SMCs
that have been phenotypically altered from a contrac-
tile to a synthetic phenotype (a common event in
atherogenesis, see above) is another means by which
lipids are accumulated in the vessel wall. The pheno-
typic state of SMCs is regulated at least in part by
mechanical forces, as demonstrated by the observation
that cyclic stretch creates a substrate-dependent mod-
ulation of proliferation and h-caldesmon expression
in vitro [155]. In vivo studies have also shown the

importance of mechanical injury in the phenotype of
vascular SMCs. For example, balloon inflation injury
to the media was shown to promote extracellular ma-
trix synthesis and decrease �-actin content in SMCs
[156]. Zhang et al. showed that neointimal smooth
muscle cells of external jugular veins transposed to the
carotid artery position display a more primitive syn-
thetic phenotype [157], supporting the notion that the
change from the venous to the arterial biomechanical
milieu triggers phenotypic alteration. Further evi-
dence comes from ex vivo organ culture studies
wherein cyclic stretch was found to be necessary to
maintain the contractile function of SMCs in cul-
tured rat portal veins [158]. Goldman et al. exposed
rat vena cava to arterial pressures [159], leading to a
large increase in medial circumferential strain and a
concomitant reduction in the SMC filamentous actin
coverage. Taken together, these previous studies
demonstrate that mechanical forces are important
modulators of lipid accumulation, another important
event in atherogenesis.

Inflammatory Cell Recruitment and Adhesion

Shear forces in conjunction with apical chemokines
promote the migration of leukocytes across the endo-
thelium [58, 59]. Both chemokines described above
(IL-8 and MCP-1) have been shown to be responsive to
mechanical stimuli. For example, human umbilical
vein endothelial cells showed increased production of
IL-8 mRNA and protein under low flow as compared to
those exposed to high flow [160–163]. IL-8 is also up-
regulated in response to cyclic stretch [164]. Similarly
for MCP-1, steady shear (ramp flow and the steady
component of step flow) diminishes protein [165] and
mRNA [166] expression, while cyclic strain induces
protein and mRNA expression [164, 167–169].

The adhesion molecules are also mechanosensitive
in that oscillatory flow induces up-regulation of adhe-
sion molecules and cytokines that mediate monocyte/EC
interactions [170, 171]. More specifically, those adhe-
sion molecules described above (i.e., P-selectin, ICAM-1,
and VCAM-1) have very specific responses to biome-
chanical forces. Fluid shear above 0.5 dyne/cm2 signif-
icantly enhances HL-60 myelocyte rolling on P-selectin
at site densities of 200/�m2 and below [172]. Shear
stress can also modulate expression of VCAM-1 and
ICAM-1 [170, 173]. Laminar flow generated shear
stress (�2.5 dyne/cm2) directly and selectively up-
regulates ICAM-1 expression on the surface of endo-
thelial cells and promotes leukocyte adhesion in a dose-
independent fashion [174–176]. VCAM-1, on the other
hand, is down-regulated by shear stress in a dose-
dependent manner [177, 178]. While we are not aware
of any studies specifically relating mural stresses or
cyclic strains with the expression of adhesion mole-
cules, veins subjected to arterial flow show increases in

ICAM-1 expression [179], which is abolished by stretch
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activated cation channel blockers [180], suggesting the
role of cyclic stretch in the expression ICAM-1. This
data demonstrates that the expression of mediators
of the inflammatory cell recruitment component of
atherogenesis is sensitive to mechanical stimulation.

Correlations Between Biomechanics and Lesion Localization

Prior to our more detailed understanding of the
mechanobiology of vascular cells, several groups began
to find correlations between physiological biomechani-
cal forces or deformations and the location of athero-
sclerotic lesions in attempts to find the mitigating fac-
tor that accounted for the heterogeneous distribution of
atherosclerosis [83, 84, 131, 181–183]. These studies
can be grouped into the ones that examine shear stress

FIG. 7. Schematic of closed-loop perfusion/organ culture system
(top). The loop is composed of a Biomedicus centrifugal pump that
provides pulsatile pressure and flow (A), a heat exchanger (D), a tissue-
housing chamber (C), proximal (B1) and distal (B2) pressure transduc-
ers, a variable resistance valve (E), flow probe (F), collection reservoir
(G), and vessel bypass (H). To provide realistic tissue bed-induced
deformations the tissue housing chamber is with custom built mechan-
ical stimulation system (bottom). A motion control program systemati-
cally operates two stepper motors. The Stretching Motor rotates a
precision-threaded lead screw transmitting longitudinal motion to the
two carriages. The Twisting Motor is fixed to a perfusion tee which
rotates an amount specified by the motion control program. Bottom
panel adapted and used with permission of The American Physiological
Society [183].
and the ones that examine mural stress. In addition,
several groups have investigated correlations between
biomechanics and vein graft stenosis by intimal hyper-
plasia (an accelerated form of atherogenesis). This
work has demonstrated that anastomosis angle, graft
diameter, and graft compliance are all important me-
chanical factors in determining the likelihood of inti-
mal hyperplasia and subsequent graft failure [184].
Our laboratory has determined that the flow condition
in the host artery should also be considered in evalu-
ating the biomechanical status and failure potential of
a vein graft [185]. Although this work is germane to the
topic of cardiovascular mechanopathobiology, the de-
tails of these and other similar studies and their im-
plications could form the basis for a separate review
article and are beyond the scope of this paper.

Shear Stress

Areas of low or oscillating shear stress within the
arterial tree have been correlated with atherogenesis
in a variety of models including the carotid bifurcation
[186–189], abdominal aorta [190, 191], and coronary
vasculature [80, 85, 192, 193]. The lower wall shear
rate near the carotid artery bifurcation is associated
with larger intimal/medial thickness than at a more prox-
imal site, suggesting accelerated atherosclerotic lesion
formation for the bifurcation region [187]. The suprare-
nal abdominal aorta, which tends to have a lower inci-
dence of plaque formation, has an uncomplicated, lami-
nar flow pattern while the more atherosclerosis-prone
infrarenal abdominal aorta has a more complicated
flow pattern characterized by flow separation, vortices,
and flow reversal [194]. In the coronary circulation,
lesion location also depends on geometric factors such
as curvature, bifurcation angle, and position of the
ostia of branches [94, 96, 195–197], all of which can
affect shear stress. Furthermore, the rate of progres-
sion of atherosclerosis, which is highly variable among
lesions in the same patient, has been related to vari-
ations in shear stress [198]. Clearly, shear stress has
been shown to be an important contributor to athero-
genesis both in correlative and mechanistic type
studies.

FIG. 8. Cross-sections of porcine arterial segments perfused with
Evan’s blue dye-labeled albumin at arterial hemodynamic conditions
ex vivo with (B) or without (A) cyclic longitudinal stretching of 7%
over in vivo length. Note the increased albumin concentration in

stretched arterial segment.
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Mural Stress

Much attention has been given to the correlations
between shear stress and atherogenesis. However,
this neglects an extremely important component of
the vascular biomechanical milieu, namely, mural
stress. The previous discussion has demonstrated
that cyclic stretch and hydrostatic pressure have the
capacity to potentiate or inhibit pathogenic features
of atherosclerosis. Furthermore, we are just begin-
ning to understand the degree to which tissue-beds
induce vascular deformations and therefore mural
stresses. Nowhere is this clearer than in the coro-
nary arteries, which seem to be exquisitely suscep-
tible to atherosclerosis [199]. Given the effects of mu-
ral stress on vascular cells, the effects of shear stress
alone cannot account for the high susceptibility of coro-
nary arteries to atherosclerosis. Indeed, in vivo studies of
mural deformations have demonstrated that regions of
coronary arteries that undergo increased levels of cyclic
flexion exhibit a greater degree of atherosclerotic lesion
formation [181, 182]. On the contrary, the intramyocar-
dial coronary arteries, which experience cyclic radial
compression due to contraction of the surrounding myo-
cardial muscle, have a low occurrence of atherosclerosis,
indicating a protective effect of mechanical compression
[83, 84]. A similar phenomenon has been seen in the
vertebral arteries, where the portions of the vessel that
are surrounded by bone tend to be free of lesions while
the intervertebral portions are more prone to atherogen-
esis [84, 200].

The protective effect provided by external radial
support as seen in the intramyocardial arteries and
the vertebral arteries presents an ideal situation
that may be an excellent avenue for clinical inter-

FIG. 9. Summary schematic demonstrating how established risk

location-specific biomechanical factors may influence lesion localization
vention. Indeed, Thubrikar et al. used rigid casts to
reduce circumferential wall distension in rabbit ar-
teries, which resulted in a reduction in atheroscle-
rotic lesion development [201]. On the other hand,
nonconstrictive (those that do not impede circumfer-
ential distension) perivascular supports have been
shown to induce intimal growth in arteries and are a
common method for experimental induction of arte-
rial injury and atherosclerosis [202]. There clearly is
a need for further work to investigate this particular
mechanical phenomenon to develop safe clinical in-
terventions.

Our laboratory has been investigating the effects
of mural stress on vascular mechanopathobiology
using our unique ex vivo dynamic organ culture device
(Fig. 7) [131, 183]. We have shown that arterial seg-
ments perfused with arterial hemodynamics and cyclic
axial stretching (7% beyond in vivo length) had an
increase in macromolecular permeability over seg-
ments perfused without stretching (Fig. 8) [203]. Fur-
thermore, cyclic stretch led to an increase in apoptotic
cells on the lumenal surface of the arterial segments
[203]. These preliminary studies, demonstrating a po-
tential correlation between mural stress and athero-
genesis, require follow-up investigation to provide fur-
ther evidence for the mechanistic link between bio-
mechanics and EC dysfunction, lipid accumulation,
and inflammatory cell recruitment and infiltration.

CONCLUSIONS

The biomechanical environment of the vasculature is
extremely complex including temporal and spatial
variations as well as fluid and solid stresses. This com-

ctors provide a systemic preponderance toward atherogenesis while
fa

by stimulating (red) or inhibiting (green) atherogenic processes.
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plex pattern of biomechanical stimuli provides a mech-
anism by which systemic insults such as diabetes mel-
litus, smoking, and dyslipidemia can result in a highly
localized heterogeneous distribution of disease such as
atherosclerosis (Fig. 9). Biomechanical forces can ei-
ther facilitate vascular insult/injury or protect against
it. The next major innovation in the prevention and
treatment of CVD must come from the basic under-
standing of the complex biomechanical milieu of the
vasculature and the mechanism by which this environ-
ment affects the pathological processes of atherogenesis.
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