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Abstract A set of multiscale simulations has been cre-

ated to examine the dynamic behavior of the human aortic

valve (AV) at the cell, tissue, and organ length scales. Each

model is fully three-dimensional and includes appropriate

nonlinear, anisotropic material models. The organ-scale

model is a dynamic fluid-structure interaction that predicts

the motion of the blood, cusps, and aortic root throughout

the full cycle of opening and closing. The tissue-scale

model simulates the behavior of the AV cusp tissue

including the sub-millimeter features of multiple layers and

undulated geometry. The cell-scale model predicts cellular

deformations of individual cells within the cusps. Each

simulation is verified against experimental data. The three

simulations are linked: deformations from the organ-scale

model are applied as boundary conditions to the tissue-

scale model, and the same is done between the tissue and

cell scales. This set of simulations is a major advance in the

study of the AV as it allows analysis of transient, three-

dimensional behavior of the AV over the range of length

scales from cell to organ.

Keywords Human aortic valve � Calcific aortic stenosis �
Multiscale mechanics � Finite element modeling �
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Introduction

Biological processes in both the healthy and diseased aortic

valve (AV) occur over a range of length scales. Cells

within the valve cusps, the valvular interstitial cells (VICs),

are understood to sense and respond to mechanical stimuli.

The VICs are subjected to transient deformations due to the

organ-scale motion of the valve opening and closing.

Currently, we understand that in healthy valves the tran-

sient deformations regulate appropriate matrix-maintaining

functions of the VICs (Taylor et al. 2003). In diseased

states, particularly in calcified valves, it is thought that

abnormal mechanical signals lead to VIC dysfunction (Otto

2002). Additionally, calcification of bioprosthetic valves is

believed to be a local effect of cusp deformation. As the

health and repair of heart valves is of great clinical

importance, significant research has been conducted to

examine the mechanical behavior of the AV at each length

scale.

The organ-scale motion of the AV has historically

attracted significant attention from experimental and the-

oretical groups. Over the past three decades, many methods

have been employed to monitor the motion of the AV. Its

small size and rapid motion make measurements chal-

lenging, but imaging technologies have recently

demonstrated the acquisition speed and resolution to dis-

cern valve motion (Baumert et al. 2005; Boehm et al.

2007). Earlier efforts have measured valve motion using

surgically attached linear transducers (Brewer et al. 1977)

and radio-opaque markers (Deck et al. 1988; Thubrikar

et al. 1980, 1986), stereophotogrammetry (Clark et al.

1974), and silicone casting (Cataloglu et al. 1976, 1977;

Gould et al. 1973).

A number of groups have used finite-element modeling

to simulate the motion of the AV. There are two main
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challenges in creating a finite-element simulation of a heart

valve. First, the leaflets undergo large displacements

through the blood, making remeshing of a fluid domain

difficult for a coupled fluid-structure interaction. While

fluid-structure interactions are generally approached using

the arbitrary Lagrange–Eulerian coupling scheme, we are

not aware of any work that successfully applies this method

to a three-dimensional (3D) valve simulation. The second

challenge in simulating valve motion is that the material is

anisotropic and nonlinear. Kim et al. (2006, 2007) have

modeled the valve motion with a specifically derived

material model, but without the fluid phase. De Hart et al.

(2003a, b, 2004) have implemented a fictitious domain

method for coupling the fluid and solid without remesh of

the fluid domain, and they have used this method to sim-

ulate the motion of the AV cusps with a fiber-supported

constitutive material model. The finite element package

LS-DYNA (LSTC, Livermore CA) includes the operator-

splitting method which similarly couples solid to fluid

without remeshing the fluid domain (Hallquist 2006). This

software has been used to perform fluid-structure interac-

tions of the AV, including the motion of the aortic root,

with an anisotropic linear elastic material model (Nicosia

et al. 2003) and to simulate the mitral valve with a user-

defined fibrous material model (Einstein et al. 2004, 2005).

A number of groups have simulated the valve solid without

fluid or under quasistatic conditions. Sun provides a full list

of such efforts (Sun et al. 2005).

A large body of research also exists in the measurement

and simulation of the mechanical properties of AV tissue.

The planar stress–strain behavior of complete tissue (Bil-

liar and Sacks 2000a; Clark et al. 1974; Rousseau et al.

1983) and individual layers (Sacks and Yoganathan 2007;

Vesely and Noseworthy 1991) have been measured as has

the flexural stiffness of the tissue (Gloeckner et al. 1999).

Merryman et al. (2006a) have measured the effect of cel-

lular contraction on the overall tissue material properties.

Various appropriate constitutive models have been for-

mulated (Billiar and Sacks 2000b; Holzapfel et al. 2000)

and implemented in solid and shell finite elements (Kim

et al. 2007; Sun and Sacks 2005; Weinberg and Kaazem-

pur-Mofrad 2005, 2006).

Modeling of cell-scale deformations in general is an

active area of research (Lim et al. 2006; Mofrad and

Kamm 2006), but investigations specific to the VICs are in

the preliminary stages. Merryman et al. have measured the

stiffness of VICs (Merryman et al. 2006b) and Huang et al.

have computed the deformation of VICs in valves sub-

jected to static pressure (Huang 2004).

While the mechanical behavior of the AV at the various

length scales is a subject of wide interest, and multiscale

analysis of other systems has been performed (Chandran

and Barocas 2007; Migliavacca et al. 2006), as of yet no

effort has been made to cohesively bring together studies of

the AV over the range from cellular to organ length scales.

Understanding of all these processes will be greatly

enhanced by a cohesive framework for examining the

deformations of the AV at the various length scales. In this

paper, we introduce a system of reference configurations to

link the length scales. We describe finite-element simula-

tions of AV mechanics at the cell, tissue, and organ length

scales. Each simulation considers the transient, three-

dimensional case with appropriate material models and

geometry. The complete set of simulations enables

unprecedented analysis of the AV mechanical behavior

across the range of length scales needed to examine bio-

logical processes in the valve.

Methods

Multiscale Approach

Simulations were created to describe behaviors at the cell,

tissue, and organ length scales. One challenge in describing

AV mechanics is that the tissue goes through a wide range

of deformations and these deformations may be referred to

a range of reference configurations. Stella (Stella and Sacks

2007) and Billiar (Billiar and Sacks 2000b) have demon-

strated the large difference in results possible when

different reference configurations are assumed. In order to

coherently link our simulations, we have defined a set of

reference configurations. Our configuration definitions

extend those of Stella (Stella and Sacks 2007; Sacks and

Yoganathan 2007). These configurations are summarized

in Table 1. In X0, the ventricularis and fibrosa are unat-

tached and stress-free. The layers are connected to form the

assembled tissue X1. In X2, the tissue is in position in a

valve to which no pressure has been applied. When the

valve is pressurized to its resting physiological state, the

tissue is in X3. We denote the time-varying state of the

tissue in the functioning valve as Xt.

The leaflet tissue exhibits locking behavior, where the

stress needed to extend the tissue increases rapidly beyond

some point. We define the extensibility of the tissue to be

the stretch that can be applied to the tissue before the

Cauchy stress exceeds 200 KPa in the direction of appli-

cation. The extensibility of the leaflet tissue in each

reference configuration, in both the circumferential and

radial directions, can be determined from published

experiments. The measured extensibilities of individual

layers referred to X0 are listed in Table 1 (Sacks and

Yoganathan 2007). Stella’s data show an increase in radial

extensibility for the fibrosa from X0 to X1. This increase is

most likely due to the fibrosa being compacted into a

wrinkled shape. We include the wrinkling effect in our
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models, so we assume that the fibrosa material has the

same radial extensibility X1 as in X0. The extensibilities of

the assembled tissue referred to X1 were estimated to be 1.7

in the radial direction and 1.2 in the circumferential

direction (Billiar and Sacks 2000a). The extensibilities

referred to the valve configuration X2 are determined by

assuming that the tissue reaches its locking stretches in

both directions in diastole. The stretches at diastole have

been measured (Cataloglu et al. 1977; Thubrikar 1990) to

be 1.25 in the radial direction and 1.1 in the circumferential

direction. The extensibilities referred to X3 are not known

a priori. For illustrative purposes, we assume that a small

stretch (1.05) is applied to the tissue in both directions

between X2 and X3. The magnitude of the stretch occurring

between X2 and X3 will be calculated in the organ-scale

simulation (see Section ‘‘Organ-level Simulation’’).

Once the extensibilities are known, we can calculate the

stretches that are applied to the tissue between each con-

figuration. With those stretches, we can begin at any

configuration and calculate the stretches required to reach

any other configuration. In Fig. 1, the stretches required to

move from X0 to all other configurations in sequence are

plotted. Note that a large stretch in the radial direction

between X1 and X2 is required to reconcile the measured

Table 1 Tissue reference

configurations
Symbol Schematic Description Extensibilities

X0 Unattached layers Fibrosa: kC = 1.10, kR = 1.40

Ventricularis: kC = 1.20,

kR = 1.90

X1 Assembled tissue Fibrosa: kC = 1.10, kR = 1.40

Ventricularis: kC = 1.20,

kR = 1.70

Tissue: kC = 1.10, kR = 1.70

X2 Tissue in value with no external forces

applied

Tissue: kC = 1.10, kR = 1.25

X3 Tissue in value with baseline pressure

applied

Tissue: kC = 1.05, kR = 1.20

Xt Tissue in functioning value Tissue, mid-diastole: kC = 1.00,

kR = 1.00

Fig. 1 Cumulative stretches

required to reach any

configuration starting at X0
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extensibility of completely load-free tissue (Billiar and

Sacks 2000a) with the observed extensibility of tissue in a

functioning valve (Cataloglu et al. 1977; Thubrikar 1990).

Thus, we are assuming that leaflet tissue, in an AV with no

external forces applied, has tension in the radial direction.

The stretch less than 1 in the radial direction for the fibrosa

represents the wrinkling of this layer when the fibrosa and

ventricularis are attached to each other.

We create our multiscale simulations within the frame-

work of these reference configurations. For each

simulation, a reference configuration is chosen and the

simulation geometry and constitutive models are referred

to that configuration. The simulations are listed in Table 2

with their length scales, reference configurations, and the

configurations that they span.

These simulations are interfaced by a simple one-way

coupling, passing data from the largest scale to the small-

est. First, the organ-level simulation is run. Element strains

output from the organ-level simulation are applied as

boundary conditions to the tissue-level simulation. Then

strains from the tissue-level simulation are passed similarly

to the cell-level simulations.

Organ-level Simulation

The organ-level simulation was performed in LS-DYNA.

This software was chosen because its operator-splitting

method for fluid-structure interaction has been demon-

strated to readily handle the motion of a solid through fluid

typical of heart valve function (Einstein et al. 2004; Nic-

osia et al. 2003). LS-DYNA is an explicit solver, which

means it may require excessive computation times in

modeling relatively low-speed physical systems such as the

AV. We address this issue in our formulation of the con-

stitutive model used to describe the cusp tissue mechanics.

To simulate the cusp mechanics, we have developed a

constitutive model that describes the bulk material behav-

ior and is particularly computationally efficient in explicit

finite element implementations. Like many tissue consti-

tutive models (Billiar and Sacks 2000b; Holzapfel et al.

2000; Humphrey 2003, Sun and Sacks 2005), ours treats

the tissue as an isotropic solid with embedded aligned

fibers. Instead of using a continuum model, though, we take

a discrete approach. The solid mesh elements are modeled

with an isotropic material. One-dimensional cable elements

are then used to connect the nodes of the solid element. LS-

DYNA allows assignment of arbitrary stress–strain curves

to the cable elements, and fiber rotations follow nodal

displacements. A single element with this model is illus-

trated in Fig. 2. Red cylinders represent fibers of one

family and blue represent fibers of another family, per-

pendicular to the first.

Appropriate stress–strain curves and cross-sectional

areas must be chosen for each fiber. It is assumed that the

fibers contribute no stiffness in compression. There is some

flexibility in choosing the magnitude of the stresses and the

cross-sectional area of the fibers. If an element with fibers

along each edge is extended in a direction parallel to those

fibers, the stress contribution of the fibers to total element

response is

rc ¼
4rf Af

Ae
; ð1Þ

where rf is the stress in each fiber, Af is the cross-sectional

area of each fiber, and Ae is the cross-sectional area of the

solid element. Thus, rc should have a value corresponding

to measured tissue properties and Ae is determined by the

mesh density, but the ratio of rf to Af can be arbitrary. This

property can be utilized to enhance the computation speed

when using the discrete fiber model in an explicit finite

element code. In the explicit method, the maximum

allowable time step is decreased as element stiffness is

increased. Because in our model the greatest stiffness is

found in the fibers, these will control the maximum time

Table 2 Simulation scales and configurations

Simulation Feature

size range

Reference

configuration

Configurations

simulated

Cell-scale 2–50 l X2 X2–Xt

Tissue-scale 50 l–1 mm X1 X1–Xt

Organ-scale 1 mm–3 cm X2 X2–Xt

Fig. 2 Single solid element with two perpendicular fiber families
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step. In a one-dimensional element the maximum

allowable time step is

Dtmax ¼ L

ffiffiffiffi

q
E

r

; ð2Þ

where L is the length of the element, q is the density of the

element, and E is the maximum material modulus

(Hallquist 2006). The stiffness of a nonlinear cable

element at a given strain eo

E ¼ or
oe

�

�

�

�

e¼eo

: ð3Þ

As such, a fiber can be defined with artificially high cross-

sectional areas Af and corresponding artificially low stress

rf. The resulting element will have low stiffness E, and

thus allow large timesteps, while still giving the correct

overall element stress rc.

The discrete fiber model was implemented in LS-

DYNA. The constitutive model was constructed referring

to the tissue configuration X2. The isotropic solid was

modeled as a single-term Mooney-Rivlin with the value

C1 = 2.0e4 chosen to fit bending data for the leaflet

(Gloeckner et al. 1999). The stress–strain curves in the

radial and circumferential direction measured experimen-

tally for configuration X2 (Sacks and Yoganathan 2007)

were discretized and applied to the fiber elements. Curves

for rc were fit to the data and curves for rf were calculated

using (Eq. 1) and a value of 1.0 e-3 m2 for Af. The aortic

root was assumed to be anisotropic and modeled with a

single-term Mooney-Rivlin material. A value of

C1 = 1.0e5 was fit to experimental pressure-versus-dila-

tion data for the root (Lansac et al. 2002).

Geometry of the AV was created in SolidWorks (Sol-

idWorks, Concord MA). Separate loft features were used to

represent the root and cusp. Dimensions were determined

from collected measurements of the gross geometry

(Thubrikar 1990) and varying cusp thicknesses (Grande-

Allen et al. 2001). Cusps were positioned in an unloaded

configuration that, according to observations of explanted

valves made in our lab, best represents the unloaded con-

figuration X2. Figure 3a shows the 3D geometry of the

valve, with colors representing the separate loft features.

Perfect symmetry of the valve was assumed so that only

one-sixth of the valve needed to be considered for simu-

lation. Entry regions were added both to allow the root to

move freely while the portions of the wall at the inlet and

outlet remain fixed to the stationary fluid sources. The solid

domain consisting of valve, root, and entry regions was

embedded in a cylindrical fluid domain with source regions

representing fluid interface with the ventricle and aorta.

Figure 3b shows the simulation geometry with 1/6 sym-

metry, entry regions, and fluid. Parametric 8-node brick

meshes of both the solid and fluid domains were created in

TrueGrid (XYZ Scientific Applications, Inc., Livermore

CA). Figure 3c shows the meshed geometry.

Cable elements representing circumferential and radial

fiber families were overlaid on the solid mesh using Hy-

perMesh (Altair Engineering, Troy MI), following

observed fiber directions (Sacks et al. 1998). The fiber

families are illustrated in Fig. 4.

Fixities and boundary conditions were applied to the

mesh. Mirror conditions were applied to fluid and solid

nodes on the two symmetry planes. The unattached ends of

the entry regions were fixed while the nodes at the junction

Fig. 3 (a) CAD geometry of

whole valve, (b) CAD

simulation geometry,

(c) meshed geometry
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of the entry regions and the aortic root were constrained

from moving axially. Outer faces of the fluid domain were

not constrained.

Two cases were run in the organ-scale simulation, a

static and a fully dynamic case. In the static case, constant

pressures of 0, 1, 2, 4, 60, and 90 mmHg were applied at

the aortic inlet sequentially. A settling time of 0.3 s was

allowed at each pressure level. Pressure at the ventricular

inlet was kept at 0 mmHg and ventricular contraction was

not applied in the static case. In the dynamic case, mea-

sured time-varying pressures for the aorta and ventricle

(Thubrikar 1990) were applied as boundary conditions to

the fluid sources. The pressure values are plotted versus

time in Fig. 5a. Contraction of the ventricle was repre-

sented by applying an experimentally-derived (Lansac

et al. 2002) time-varying radial displacement to the base of

the AV. The applied dilation of the base is plotted in

Fig. 5b. In Fig. 5, the time from -0.3 \ t \ 0 represents

the pressurization of the valve from configuration X2 to X3.

Configuration Xt is any state where t [ 0. Systole occurs

for approximately 0 \ t \ 0.25 and diastole for

0.3 \ t \ 1.0. All temporal plots in this paper are referred

to this timeframe.

Results of the organ-level simulation were processed in

HyperView (Altair Engineering, Troy MI). The model was

verified by comparing a number of behaviors in the solid

and fluid to experimental data. Element deformations were

tracked at three locations for mapping to the tissue-level

simulation. These three locations are illustrated in Fig. 6.

Tissue-level Simulation

In the organ-level simulation, we use a greatly simplified

model of the cusp tissue. This simplified model gives the

Fig. 4 One cusp, with (a)

experimentally measured fiber

orientation (Sacks et al. 1998)

and (b) discrete fibers overlaid

on the solid mesh. Red

represents circumferential fibers

and blue represents radial

Fig. 5 (a) Pressure versus time

curves applied as model

boundary conditions, (b)

Dilation of aortic valve base

applied as model boundary

condition

Fig. 6 Locations to track deformations in the organ-scale simulation
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correct bulk behavior (bending and biaxial stiffness), but

does not predict local tissue deformations. To do so, we

developed a tissue model that incorporates all of the major

known features of the cusp tissue. These characteristics are:

the cusp has three distinct layers (the ventricularis,

spongiosa, and fibrosa), the fibrosa and ventricularis have

embedded families of aligned fibers, the fibrosa is highly

undulated, and the spongiosa is gel-like.

We created the tissue-level model in the ADINA

implicit finite-element software (ADINA R&D, Watertown

MA). Computational cost is not a concern so, unlike in the

organ-scale model, we can use continuum material models.

We consider the fibrous layers to be composed of an iso-

tropic exponential material with a family of embedded

exponential fibers running in the circumferential tissue

direction. Additionally, bending data (Gloeckner et al.

1999) show that the tissue has an initial modulus.

We model the isotropic exponential material with a

single-term Fung-like exponential (Fung 1993). The strain

energy function for this term is

Wexponential ¼ C1m exp C2m I1 � 3ð Þ½ � � 1f g; ð4Þ

where C1m and C2m are constants that will be calculated

from experimental data and I1 is the first strain invariant.

We provide an initial modulus with a single-term Mooney-

Rivlin, for which the strain energy function is

Winitial ¼ CI I1 � 3ð Þ; ð5Þ

where CI is a constant that will be calculated from

experimental data. The embedded fiber family is modeled

using the Holzapfel model (Holzapfel et al. 2000),

Wfiber ¼
C1f

2C2f
exp C2f I4 � 3ð Þ2

h i

� 1
n o

; ð6Þ

where C1f and C2f are constants that will be calculated from

experimental data. The complete strain energy function for

a fibrous layer is a sum of the terms above,

W ¼ C1m exp C2m I1 � 3ð Þ½ � � 1f g þ CI I1�3ð Þ

þ C1f

2C2f
exp C2f I4 � 3ð Þ2

h i

� 1
n o

: ð7Þ

We modeled the spongiosa with a single-term Mooney-

Rivlin strain energy function.

The fiber layers are described by five constants: CI, C1m,

C2m, C1f, and C2f. We calculate these values from experi-

mental data. Sensitive measurements of the tissue flexural

stiffness simply give the initial modulus. We assume that

the initial modulus is the same in the ventricularis and

fibrosa and that the stiffness of the spongiosa, which is

much more compliant (Vesely and Noseworthy 1991), is an

order of magnitude lower.

Constants of the exponential terms were determined

from biaxial stress–strain data for the individual layers

(Sacks and Yoganathan 2007). Two values were extracted

for both the radial and circumferential tissue directions. A

locking modulus EL is defined as the Young’s modulus in

the direction of interest when the tissue reaches full

extensibility in that direction. The extensibilities and

locking moduli in the circumferential and radial directions

are adequate to analytically solve for the four remaining

constants, C1m, C2m, C1f, and C2f. The extensibilities,

moduli, and determined constants, are listed in Table 3.

We have calculated the constants referred both to config-

uration X0 and X1.

Geometry for the model of assembled tissue, configu-

ration X1, was created in Solidworks. The dimensions are

based on measurements of tissue thickness (Sacks and

Yoganathan 2007; Vesely and Noseworthy 1991) and

observations of tissue cross-sections. Figure 7a shows a

micrograph cross-section of valve cusp tissue, and Fig. 7b,

the meshed CAD representation of this geometry. Material

properties from Table 3 were assigned to the appropriate

layers in configuration X1. Biaxial stress and bending

conditions were applied to the assembled tissue, and the

results were compared to experimental data (Billiar and

Sacks 2000a, Gloeckner et al. 1999). Each term in (Eq. 7)

is convex over a wide range of deformations, so the com-

plete equation was also expected to maintain convexity.

We examined convexity on the ventricularis and fibrosa

models by calculating the strain energy over a wide range

of biaxial conditions.

Table 3 Tissue layers and properties in configurations X0 and X1

Extensibility Locking modulus

Layer Configuration Circumferential Radial Circumferential Radial CI C1m C2m C1f C2f

[–] [–] [Pa] [Pa] [Pa] [Pa] [–] [Pa] [–]

Fibrosa X0 1.1 1.4 2.6e7 1.1e7 2.0e4 0.95 1.4e3 0.04 24

X1 1.1 1.4 2.6e7 1.1e7 2.0e4 0.95 1.4e3 0.04 24

Ventricularis X0 1.2 1.9 1.6e7 5.0e6 2.0e4 2.5e–5 1.1e2 0.04 5.4

X1 1.2 1.7 1.6e7 5.0e6 2.0e4 2.5e–5 1.1e2 0.05 5.7
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We used the model of the multilayered tissue referred to

configuration X1 to map deformations from the organ-scale

model to the cell-scale model. First, a radial stretch is

applied to move the tissue from configuration X1 to X2, its

position in the unpressurized valve. Then element strains

measured in the organ-level simulation, which covers

configurations X2 through Xt, were applied as time-varying

displacement boundary conditions to the tissue model.

Deformations at points within the ventricularis and fibrosa,

shown in Fig. 7c, were tracked and passed on to the cell-

level simulation. Point 1 is in an expected high-deforma-

tion region of the fibrosa, Point 2 is in an expected low-

deformation region of the fibrosa, and Point 3 is in the

ventricularis. Mapping was performed for both the static

and dynamic cases.

In addition to the model of the multilayered tissue, we

have modeled the assembly of the tissue (transition from

X0 to X1) with the observed preloading between fibrosa and

ventricularis (Vesely 1996; Vesely and Lozon 1993). A

model fibrosa with mechanical properties referred to X0

was compressed and a fibrosa stretched using the values

plotted in Table 3. While this model was not used in our

current multiscale approach, it does allow prediction of

deformations over the entire range from X0 to Xt.

Cell-level Simulation

The cell-level simulation consists of a single cell sur-

rounded by matrix, either fibrosa or ventricularis.

Constitutive models for the matrix are the same as those for

the tissue-level model. The constitutive model for the cell

is a single-term Mooney-Rivlin with C1 = 400 Pa (Huang

2004).

Geometry was created in ADINA (ADINAR&D,

Watertown MA). A sphere was created within cube and

then scaled in the three dimensions to give the cell an

ellipsoidal shape. According to experimental measure-

ments (Huang 2004), the major axes of this cell were

defined to be 10 lm in the circumferential direction,

7.7 lm in the radial direction, and 4.3 lm in the transmural

direction. Three planes of symmetry were defined so that

the computation domain consists of 1/8th of the cell and

matrix. The simulation geometry is shown in Fig. 8.

Displacement boundary conditions were applied to the

outer faces of the matrix. These displacements were

defined to represent the element strains calculated in the

tissue-level simulation. Because the relevant experiments

(Huang 2004) start with the valve in a zero-pressure state,

we started our cell simulations in the unpressurized valve

configuration X2. Cell aspect ratio (CAR) was output from

the simulation. The model was verified by comparing

results of the static case to experimental CAR measure-

ments made under the same conditions (Huang 2004). Cell

aspect ratio was also computed for the dynamic case of

valve opening and closing.

Results

Organ-level Simulation

The discrete fiber constitutive model was found to be

adequate in predicting the bulk deformation behavior of the

tissue. Figure 9a shows the biaxial response of this model

and Fig. 9b shows the bending response. Because we are

not aware of any experimental data for tissue properties

referred to the assembled valve configuration X2, we could

not construct this model to match a specific case. Note,

Fig. 7 (a) micrograph of AV

leaflet cross-section (Sung et al.

1999), (b) meshed model of AV

leaflet, (c) locations for

deformation tracking

Fig. 8 Meshed geometry for cell-scale simulation. Cell is colored red

and matrix is gray
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however, in Fig. 9a the similarity between our model

predictions and the measurements made by Billiar referred

to a lightly preloaded configuration (Billiar and Sacks

2000a). This enforces the notion that the tissue exists in a

lightly preloaded state in the valve.

One second of physical time, representing either the full

static case or one dynamic cycle of valve opening and

closing, ran in approximately 3 h of computation time on a

workstation with 4 Xeon 5160 3.00 GHz processors. There

was no leakage in the fluid-structure interaction, and the

cusps coapted and sealed against flow. Figure 10a shows

the valve in various stages of the dynamic cycle.

For the dynamic case, theoretical predictions matched

experimental data in a number of measures. In the fluid

phase, the bulk flow rate through the valve closely corre-

sponded with experimental data (Nichols and O’Rourke

1998). Velocity profiles predicted at various times across

the AV outlet are compared to experimental measurements

in Fig. 11. Theoretical and measured flow rates are plotted

versus time in Fig. 12. In the solid phase, predictions were

compared to experimental data for cusp edge and center

displacement, circumferential strain, radial strain, and root

motion (Thubrikar 1990). These results are plotted in

Fig. 13. In the fluid and solid phase, predictions display all

major trends with correct magnitudes when compared to

measured data. Error magnitudes are acceptable given

patient-to-patient variation, beat-to-beat variation, and

experimental errors inherent in measurement of the rapidly

moving in-vivo system.

Element stretches averaged over the locations illustrated

in Fig. 6 for the static case are shown in Fig. 14. Defor-

mations recorded in the dynamic case for location B shown

in Fig. 6 in the dynamic case are plotted versus time in

Fig. 15. Stretches for t \ 0 represent the unknown

Fig. 9 Discrete fiber model

predictions and experimental

results: (a) predicted biaxial

behavior and experimental data

for a lightly preloaded case

(Billiar and Sacks 2000a), (b)

predicted bending behavior and

the experimental data (Sacks

2001) to which the model was

fit

Fig. 10 Selected deformed

states in each dynamic

simulation
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stretches between reference configurations X2 and X3 dis-

cussed in Section ‘‘Multi-Scale Approach’’. The dominant

deformations were the tensile stretches in the radial and

circumferential directions and the bending in the radial

direction. In the tracked locations, shears in and out of the

plane of the tissue as well as bending in the circumferential

direction tended to be small and were not mapped to the

tissue-level model.

Tissue-level Simulation

All tissue-level simulations ran to convergence over a

range of strains larger than is expected to be seen

physiologically. Contour plots of the strain-energy surfaces

for the fibrosa and ventricularis models are shown in

Fig. 16. For visualization of the wide variation in energies

of these exponential functions, we have plotted log(W).

Convexity was maintained in all tested cases. The

responses of the fibrosa and ventricularis model to biaxial

tension are plotted in Fig. 17. The predicted biaxial and

bending behaviors of the complete tissue model compared

to experimental (Gloeckner et al. 1999; Sacks and Yoga-

nathan 2007) are shown in Fig. 18. We note a discrepancy

in the experimental data for the circumferential direction

between the individual layers (Fig. 17) (Sacks and Yoga-

nathan 2007) and the assembled tissue (Fig. 18) (Billiar

and Sacks 2000a): the assembled tissue is more extensible

Fig. 11 Predicted and

measured velocity profiles at

AV exit: (a) shows profiles

while the fluid is accelerating

flow and (b) during deceleration
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than the fibrosa in this direction. Hence, our model matches

the data for individual layers well and underestimates the

extensibility of the assembled tissue compared to this data

set. The smaller value of the extensibility is consistent with

stretches observed in the functioning valve (Cataloglu et al.

1976, 1977; Thubrikar et al. 1986).

Radial stretches due to assembly of the layers into a

complete tissue (deforming from X0 to X1) are shown in

Fig. 19. Deformation states for the tissue model subject to

strains measured in the organ-level model are shown at

various times in Fig. 10b. Stretch magnitudes predicted in

the static case are plotted in Fig. 20. Stretches recorded in

the tissue model for the dynamic case are plotted versus

time in Fig. 21.

Cell-level Simulation

All cell-level simulations ran to convergence. Deformation

states for selected locations at various times in the cycle are

illustrated in Fig. 10c. In Fig. 22, cellular aspect ratios

predicted for the static case are compared to measurements

(Huang 2004) made under static pressure. Values at points

1, 2, and 3 are plotted. The experimental data is an average

over the leaflet, so we have also plotted the average over

points 1, 2, and 3. The variation in CAR through the leaflet

thickness and with varying pressure is compared to

experimental data (Huang 2004) in Fig. 23. In both com-

parisons, the predictions closely match the experimental

data. In the dynamic case, we have computed the time-

varying aspect ratios for the three points tracked in the

tissue-scale simulation at the three locations tracked in the

organ-scale simulation for a total of 9 points. To give a

typical response, we have averaged together the cellular

aspect ratios for point 1 (see Fig. 7c.) of locations A, B,

and C (see Fig. 6). We have done the same for points 2 and

3. The results are plotted in Fig. 24.

Discussion

Organ-level Simulation

A number of assumptions were made to simplify analysis

of the valve motion. First, a 1/6 symmetry was assumed for

the valve. In reality, there is at least a difference between

the coronary and non-coronary sinuses and cusps. It has

been shown that the asymmetry does create different strain

states in leaflets of the same valve (Grande et al. 1998).

Fig. 12 Predicted and measured flow rates through AV

Fig. 13 Predicted and measured (Thubrikar 1990) motion of valve

leaflets: (a) circumferential leaflet stretch, (b) radial leaflet stretch, (c)

displacement of points at edge and middle of leaflet
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However, these differences are small relative to the large

displacements and strains that take place in the valve. The

experiments to which we have compared our predictions

generally do not note a difference between leaflets (Thu-

brikar 1990), hence the effects of asymmetry are finer than

the current work can resolve. A coarse mesh was used,

particularly in the fluid phase, to decrease computation

time. Prediction of finer features of the fluid and shears

within thin boundary layers would require a significantly

refined mesh.

Equally important simplifications were made in the

choice of material model used. We assumed that both the

leaflet and wall materials are homogenous and that the

leaflet fiber directions can be represented simply by two

fiber families. Both the leaflet (Sacks et al. 1998) and wall

(Lansac et al. 2002) have been shown to be in inhomoge-

neous, and the leaflet fiber distribution varies throughout the

leaflet and changes as the tissue deforms (Sacks et al. 1998).

There does not currently exist, however, a complete map of

material properties to the valve geometry. For example, the

leaflet material properties have been accurately measured

in-vitro (Billiar and Sacks 2000a), but the effects of phys-

ical preloads and cellular contraction (Merryman et al.

2006a) in-vivo are undetermined. The discrete-fiber model

simulates the main features that we currently understand to

be important to the tissue bulk deformation.

Other simplifications include our smooth CAD repre-

sentation of a complex biological geometry, representation

of the ventricular contraction as a simple displacement

condition, and lack of tissue surrounding the aortic root.

The organ-scale model is clearly an idealization of the

physical case. Comparison of the model to experimental

data for both the fluid and solid domains shows that the

model capably represents the valve motion in both domains.

Tissue-level Simulation

The purpose of the tissue-level simulation is to translate

deformations from the organ scale to the cell scale. Since

the AV cusp tissue is multilayered and undulated, the tissue

model must also have those characteristics in order to

accurately predict the cell-level deformations. While the

bulk properties of the tissue have been widely reported, the

details of the interplay between layers and motion of the

undulations in the fibrosa as the tissue deforms are not

known. Our tissue model simulates the major bulk behav-

iors of each layer and of the complete tissue but the local

behaviors are, at this time, speculative. Experimental

investigation into the local deformations of the AV tissue

could be used to verify this work. Currently, the tissue

model accurately represents bulk tissue behavior and

approximates local behavior to the highest resolution pos-

sible given available knowledge.

Cell-level Simulation

Our model of the mechanics of VICs in the leaflets is highly

simplified. Both the matrix and cell are modeled as

Fig. 14 Element stretches predicted in static case

Fig. 15 Element deformations predicted in dynamic case versus

time: (a) planar stretches, (b) curvature
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homogenous solids. Actually, the fibrous nature of the

matrix is evident at the cell scale and the cell has multiple

solid and fluid components. The features of the matrix and

cell have not been determined beyond what we have inclu-

ded in our model, though. Given the series of assumptions

made across the simulations, the predictive ability of the

cell-level simulation demonstrated in the static case is

remarkable. Our model predicts both the trend and magni-

tude of change in CAR with pressure as well as the variation

across the leaflet thickness. These results give a high degree

of confidence in the predictions for the dynamic case.

Conclusions

We have created three models for AV mechanics, one at

each of the cell, tissue, and organ length scales. The

Fig. 16 Contour plots of log

(W) for continuum model

subjected to biaxial loading

conditions: (a) fibrosa model,

(b) ventricularis model

Fig. 17 Predictions and experimental (Sacks and Yoganathan 2007)

data for biaxial tension of individual layers, referred to configuration

X0

Fig. 18 Continuum model

predictions for the assembled

tissue, referred to configuration

X1, compared to experimental

results (Billiar and Sacks 2000a;

Gloeckner et al. 1999): (a)

biaxial, (b) bending

Fig. 19 Radial stretches due to

assembling layers into complete

tissue
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individual models capture the major known mechanical

aspects at their respective scales. We have demonstrated

that each model is numerically functional and satisfactorily

matches experimental data. Each model represents a sig-

nificantly simplified version of the physical AV, and they

all can be refined by coordinating with further experimental

work.

We have introduced a coherent set of reference config-

urations to link the three models so as to create one

multiscale simulation of the complete mechanics and

motion of the AV. We have verified our multiscale model

in the static case, which simulates a multiscale experiment

that has been previously performed. In this case, the input

Fig. 20 Stretch magnitudes

predicted by tissue-scale model

for static case: (a)

circumferential, (b) radial

Fig. 21 Stretch magnitudes predicted by tissue-scale model versus

time at location B illustrated in Fig. 6 for the dynamic case

Fig. 22 Predicted cellular aspect ratios compared to experimental

measurements (Huang 2004) for the static case

Fig. 23 Predicted distribution of cellular aspect ratios through leaflet

thickness compared to experimental measurements (Huang 2004) for

the static case. Normalized thickness varies from the ventricularis

surface at 0 to the fibrosa surface at 1

Fig. 24 Predicted cellular aspect ratios for the dynamic case,

averaged over organ-scale locations A, B, and C
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to the model is made at the organ scale (pressure boundary

conditions). Deformations pass through the length scales

and the output is observed at the cell scale (cell aspect

ratios). We have demonstrated the ability of our approach

to accurately handle the multiscale behavior in the static

case, providing confidence in the predictions for the

dynamic case.

Our multscale model has application in studying both

the healthy and diseased AV. In particular, the disease

calcific aortic stenosis has a multiscale mechanical

pathology. One of the causes of CAS is understood to be

abnormal tissue strains giving rise to abnormal VIC

responses, leading to calcification. This process can be

examined using the multiscale model we have presented.

The effect of the disease is a stiffening of the matrix

material, and our model can simulate stiffening at all three

length scales. We expect that multiscale simulation of the

AV will be a valuable tool to be used along side experi-

mental work to better understand AV health and disease.

References

Baumert B, Plass A, Bettex D, Alkadhi H, Desbiolles L, Wildermuth

S, Marincek B, Boehm T. Dynamic cine mode imaging of the

normal aortic valve using 16-channel multidetector row com-

puted tomography. Invest Radiol 2005;40:637–47.

Billiar K, Sacks MS. Biaxial mechanical properties of the natural and

glutaraldehyde treated aortic valve cusp-Part I: experimental

results. J Biomech Eng 2000a;122:23–30.

Billiar K, Sacks MS. Biaxial mechanical properties of the natural and

glutaraldehyde treated aortic valve cusp-Part II: a structural

constitutive model. J Biomech Eng 2000b;122:327–35.

Boehm T, Husmann L, Leschka S, Desbiolles L, Marincek B, Alkadhi

H. Image quality of the aortic and mitral valve with CT: relative

versus absolute delay reconstruction. Acad Radiol 2007;14:

613–24.

Brewer RJ, Mentzer RM, Deck JD, Ritter RC, Trefil JS, Nolan SP.

In vivo study of dimensional changes of aortic-valve leaflets

during cardiac cycle. J Thorac Cardiovasc Surg 1977;74:645–50.

Cataloglu A, Clark R, Gould P. Stress analysis of aortic valve leaflets

with smoothed geometrical data. J Biomech 1977;10:153.

Cataloglu A, Gould P, Clark R. Refined stress analysis of human

aortic heart valves. J Eng Mech Div Proc Am Soc Civil Eng

1976;102:135–50.

Chandran PL, Barocas VH. Deterministic material-based averaging

theory model of collagen gel micromechanics. J Biomech Eng-T

ASME 2007;129:137–47.

Clark RE, Karara SM, Catalogl A, Gould PL. Determination of

diastolic stresses in human aortic-valve through close range

stereophotogrammetry. Circulation 1974;50:165–5.

De Hart J, Baaijens FPT, Peters GWM, Schreurs PJG. A computa-

tional fluid-structure interaction analysis of a fiber-reinforced

stentless aortic valve. J Biomech 2003a;36:699–712.

De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. A three-

dimensional computational analysis of fluid-structure interaction

in the aortic valve. J Biomech 2003b;36:103–12.

De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. Collagen fibers

reduce stresses and stabilize motion of aortic valve leaflets

during systole. J Biomech 2004;37:303–11.

Deck JD, Thubrikar MJ, Schneider PJ, Nolan SP. Structure, stress,

and tissue-repair in aortic-valve leaflets. Cardiovasc Res

1988;22:7–16.

Einstein DR, Kunzelman KS, Reinhall PG, Nicosia MA, Cochran

RP. Haemodynamic determinants of the mitral valve closure

sound: a finite element study. Med Biol Eng Comput 2004;42:

832–46.

Einstein DR, Kunzelman KS, Reinhall PG, Nicosia MA, Cochran RP.

Non-linear fluid-coupled computational model of the mitral

valve. J Heart Valve Dis 2005;14:376–85.

Fung Y. Biomechanics: mechanical properties of living tissues. New

York: Springer; 1993.

Gloeckner D, Billiar K, Sacks M. Effects of mechanical fatigue on the

bending properties of the porcine bioprosthetic heart valve.

ASAIO J 1999;45:59–63.

Gould P, Cataloglu A, Dhatt G, Cattopadhyay A, Clark R. Stress

analysis of the human aortic valve. Comput Struct 1973;3:377.

Grande-Allen K, Cochran R, Reinhall P, Kunzelman K. Finite-

element analysis of aortic valve sparing: influence of graft shape

and stiffness. IEEE Transa Biomed Eng 2001;48:647–59.

Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Stress

variations in the human aortic root and valve: the role of

anatomic asymmetry. Ann Biomed Eng 1998;26:534–45.

Hallquist J. LS-DYNA theory manual. Livermore; 2006.

Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework

for arterial wall mechanics and a comparative study of material

models. J Elast 2000;61:1–48.

Huang H-YS. Micromechanical simulations of heart valve tissues:

University of Pittsburgh; 2004.

Humphrey JD. Continuum biomechanics of soft biological tissues.

Proceedings of the Royal Society of London Series A—

Mathematical Physical and Engineering Sciences 2003;459:

3–46.

Kim H, Chandran KB, Sacks MS, Lu J. An experimentally derived

stress resultant shell model for heart valve dynamic simulations.

Ann Biomed Eng 2007;35:30–44.

Kim H, Lu J, Sacks MS, Chandran KB. Dynamic simulation

pericardial bioprosthetic heart valve function. J Biomech Eng-

T ASME 2006;128:717–24.

Lansac E, Lim HS, Shomura Y, Lim KH, Rice NT, Goetz W, Acar C,

Duran CMG. A four-dimensional study of the aortic root

dynamics. Eur J Cardiothorac Surg 2002;22:497–503.

Lim C, Zhou E, Quek S. Mechanical models for living cells—a

review. J Biomech 2006;39:195–216.

Merryman WD, Huang H-YS, Schoen FJ, Sacks MS. The effects of

cellular contraction on aortic valve leaflet flexural stiffness. J

Biomech 2006a;39:88–96.

Merryman WD, Youn I, Lukoff HD, Krueger PM, Guilak F, Hopkins

RA, Sacks MS. Correlation between heart valve instertitial cell

stiffness and transvalvular pressure: implications for collagen

biosynthesis. Heart Circ Physiol 2006b;290:H224–31.

Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval

MR, Bove EL. Multiscale modelling in biofluidynamics: Appli-

cation to reconstructive paediatric cardiac surgery. J Biomech

2006;39:1010–20.

Mofrad MRK, Kamm RD, editors. Cytoskeletal mechanics: models

and measurements. Cambridge University Press; 2006.

Nichols W, O’Rourke M. McDonald’s blood flow in arteries. 5th ed.

London: Arnold; 1998.

Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS.

A coupled fluid-structure finite element modle of the aortic valve

and root. J Heart Valve Dis 2003;12:781–9.

Otto CM. Calcification of bicuspid aortic valves. Heart 2002;88:

321–2.

Rousseau EPM, Sauren A, Vanhout MC, Vansteenhoven AA.

Elastic and viscoelastic material behavior of fresh and

Cardiovasc Eng

123



glutaraldehyde-treated porcine aortic-valve tissue. J Biomech

1983;16:339–48.

Sacks MS. The biomechanical effects of fatigue on the porcine

bioprosthetic heart valves. J Long Term Effects Med Implants

2001;11(3–4):231–47.

Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure:

effects of transvalvular pressure. J Biomed Mater Res

1998;41:131–41.

Sacks MS, Yoganathan AP. Heart valve function: a biomechanical

perspective. Phil Trans R Soc B 2007;362:1369–91.

Stella JA, Sacks MS. On the biaxial mechanical properties of the

layers of the aortic valve leaflet. J Biomech Eng 2007; in press.

Sun W, Abad A, Sacks MS. Simulated bioprosthetic heart valve

deformation under quasi-static loading. J Biomech Eng-T ASME

2005;127:905–14.

Sun W, Sacks MS. Finite element implementation of a generalized

Fung-elastic constitutive model for planar soft tissues. Biomech

Model Mechanobiol 2005;4:190–9.

Sung H-W, Chang Y, Chui C-T, Chen C-N, Liang H-C. Mechanical

properties of a porcine aortic valve fixed with a naturally

occurring croslinking agent. Biomaterials 1999;20:1759–72.

Taylor P, Batten P, Brand N, Thomas P, Yacoub M. The cardiac valve

interstitial cell. Int J Biochem Cell Biol 2003;35:113–8.

Thubrikar M. The aortic valve. Boca Raton: CRC Press; 1990.

Thubrikar M, Piepgrass WC, Deck JD, Nolan SP. Stresses of natural

versus prosthetic aortic-valve leaflets invivo. Ann Thorac Surg

1980;30:230–9.

Thubrikar MJ, Nolan SP, Aouad J, Deck JD. Stress sharing between

the sinus and leaflets of canine aortic valve. Ann Thorac Surg

1986;42:434–40.

Vesely I. Reconstruction of loads in the fibrosa and ventricularis of

porcine aortic valves. ASAIO J 1996;42:M739–46.

Vesely I, Lozon A. Natural preload of aortic valve leaflet components

during glutaraldehyde fixation: effects on tissue mechanics. J

Biomech 1993;26:121–31.

Vesely I, Noseworthy R. Micromechanics of the fibrosa and

the ventricularis in aortic valve leaflets. J Biomech 1991;25:

101–13.

Weinberg EJ, Kaazempur-Mofrad MR. A large-strain finite element

formulation for biological tissues with application to mitral valve

leaflet tissue mechanics. J Biomech 2005;39:1557–61.

Weinberg EJ, Kaazempur-Mofrad MR. A finite shell element for heart

mitral valve leaflet mechanics, with large deformations and 3D

constitutive model. J Biomech 2006;40:705–11.

Cardiovasc Eng

123


	Transient, Three-dimensional, Multiscale Simulations �of the Human Aortic Valve
	Abstract
	Introduction
	Methods
	Multiscale Approach
	Organ-level Simulation
	Tissue-level Simulation
	Cell-level Simulation

	Results
	Organ-level Simulation
	Tissue-level Simulation
	Cell-level Simulation

	Discussion
	Organ-level Simulation
	Tissue-level Simulation
	Cell-level Simulation

	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


