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In this chapter we provide a brief overview of the main ingredients of the
nonlinear theory of elasticity in order to establish the basic background material
as a reference source for the other, more specialized, chapters in this volume.

1.1 Introduction

In this introductory chapter we summarize the basic equations of nonlinear
elasticity theory as a point of departure and as a reference source for the other
articles in this volume which are concerned with more specific topics.

There are several texts and monographs which deal with the subject of non-
linear elasticity in some detail and from different standpoints. The most impor-
tant of these are, in chronological order of the publication of the first edition,
Green and Zerna (1954, 1968, 1992), Green and Adkins (1960, 1970), Truesdell
and Noll (1965), Wang and Truesdell (1973), Chadwick (1976, 1999), Marsden
and Hughes (1983, 1994), Ogden (1984a, 1997), Ciarlet (1988) and Antman
(1995). See also the textbook by Holzapfel (2000), which deals with viscoelas-
ticity and other aspects of nonlinear solid mechanics as well as containing an
extensive treatment of nonlinear elasticity. These books may be referred to for
more detailed study. Subsequently in this chapter we shall refer to the most re-
cent editions of these works. The review articles by Spencer (1970) and Beatty
(1987) are also valuable sources of reference.

Section 1.2 of this chapter is concerned with laying down the basic equa-
tions of elastostatics and it includes a summary of the relevant geometry of
deformation and strain, an account of stress and stress tensors, the equilibrium
equations and boundary conditions and an introduction to the formulation of
constitutive laws for elastic materials, with discussion of the important notions
of objectivity and material symmetry. Some emphasis is placed on the spe-
cial case of isotropic elastic materials, and the constitutive laws for anisotropic
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material consisting of one or two families of fibres are also discussed. The mod-
ifications to the constitutive laws when internal constraints such as incompress-
ibility and inextensibility are present are provided. The general boundary-value
problem of nonlinear elasticity is then formulated and the circumstances when
this can be cast in a variational structure are discussed briefly.

In Section 1.3 some basic examples of boundary-value problems are given.
Specifically, the equations governing some homogeneous deformations are high-
lighted, with the emphasis on incompressible materials. Other chapters in this
volume will discuss a range of different boundary-value problems involving non-
homogeneous deformations so here we focus attention on just one problem as
an exemplar. This is the problem of extension and inflation of a thick-walled
circular cylindrical tube. The analysis is given for an incompressible isotropic
elastic solid and also for a material with two mechanically equivalent symmet-
rically disposed families of fibres in order to illustrate some differences between
isotropic and anisotropic response.

The (linearized) equations of incremental elasticity associated with small de-
formations superimposed on a finite deformation are summarized in Section
1.4. The incremental constitutive law for an elastic material is used to iden-
tify the (fourth-order) tensor of elastic moduli associated with the stress and
deformation variables used in the formulation of the governing equations, and
explicit expressions for the components of this tensor are given in the case of
an isotropic material. For the two-dimensional specialization, necessary and
sufficient conditions on these components for the strong ellipticity inequalities
to hold are given for both unconstrained and incompressible materials. A brief
discussion of incremental uniqueness and stability is then given in the context
of the dead-load boundary-value problem and the associated local inequalities
are given explicit form for an isotropic material, again for both unconstrained
and incompressible materials. A short discussion of global aspects of non-
uniqueness for an isotropic material sets the incremental results in a broader
context.

In Section 1.5 the equations of incremental deformations and equilibrium
given in Section 1.4 are specialized to the plane strain context in order to
provide a formulation for the analysis of incremental plane strain boundary-
value problems. Specifically, we provide an example of a typical incremental
boundary-value problem by considering bifurcation of a uniformly deformed
half-space from a homogeneously deformed configuration into a non-homogene-
ous local mode of deformation. An explicit bifurcation condition is given for this
problem and the results are illustrated for two forms of strain-energy function.

Finally, in Section 1.6 we summarize the equations associated with the (non-
linear) dynamics of an elastic body at finite strain. The (linearized) equations
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for small motions superimposed on a static finite deformation are then given
and these are applied to the analysis of plane waves propagating in a homoge-
neously deformed material.

References are given throughout the text but these are not intended to pro-
vide an exhaustive list of original sources. Where appropriate we mention
papers and books where more detailed citations can be found. Also, where a
topic is to be dealt with in detail in one of the other chapters of this volume
the appropriate citations are included there.

1.2 Elastostatics

In this section we summarize the basic equations of the static theory of non-
linear elasticity, including the kinematics of deformation, the analysis of stress
and the governing equations of equilibrium, and we introduce the various forms
of constitutive law for an elastic material, including a discussion of isotropy and
anisotropy. We then formulate the basic boundary-value problem of nonlinear
elasticity. The development here is a synthesis of the essential material taken
from the book by Ogden (1997) with some minor differences and additions.

1.2.1 Deformation and strain

We consider a continuous body which occupies a connected open subset of a
three-dimensional Euclidean point space, and we refer to such a subset as a
configuration of the body. We identify an arbitrary configuration as a reference
configuration and denote this by B,. Let points in B, be labelled by their
position vectors X relative to an arbitrarily chosen origin and let 8B, denote
the boundary of B,. Now suppose that the body is deformed quasi-statically
from B, so that it occupies a new configuration, B say, with boundary 8B. We
refer to B as the current or deformed configuration of the body. The deformation
is represented by the mapping X : B, — B which takes points X in B, to points
x in B. Thus,

x=x(X), XeB, (2.1)

where x is the position vector of the point X in B. The mapping ¥ is called
the deformation from B, to B. We require x to be one-to-one and we write its
inverse as x 1, so that

X =x"1(x), x € B. (2.2)
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Both x and its inverse are assumed to satisfy appropriate regularity conditions.
Here, it suffices to take X to be twice continuously differentiable, but different
requirements may be specified in other chapters of this volume.

For simplicity we consider only Cartesian coordinate systems and let X and
x respectively have coordinates X, and z;, where a, i € {1,2,3}, so that
zi = Xi(Xa). Greek and Roman indices refer, respectively, to B, and B and
the usual summation convention for repeated indices is used.

The deformation gradient tensor, denoted F, is given by

F = Gradx (2.3)

and has Cartesian components F;, = 8z;/8X,, Grad being the gradient op-
erator in B,. Local invertibility of x requires that F be non-singular, and we
adopt the usual convention that det F > 0. Similarly, for the inverse deforma-
tion gradient

X,
81!,' ’

where grad is the gradient operator in B. With use of the notation defined by

Fl=gradX, (F Y=

(2.4)

J =detF (2.5)
we then have
0<J < o0. (2.6)
The equation
dx = FdX (2.7

(in components dz; = F;,dX,,) describes how an infinitesimal line element dX
of material at the point X transforms linearly under the deformation into the
line element dx at x.

We now set down how elements of surface area and volume transform. Let
dA = NdA denote a vector surface area element on 8B,, where N is the unit
outward normal to the surface, and da = nda the corresponding area element
on 9B. Then, the area elements are connected according to Nanson’s formula

nda = JF~TNdA, (2.8)

where F~T = (F~!)T and 7 denotes the transpose. Note that, unlike a line
element, the normal vector is not embedded in the material, i.e. n is not in
general aligned with the same line element of material as N.
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If dV and dv denote volume elements in B, and B respectively then we also
have

dv = JdV. (2.9)
For a volume preserving (isochoric) deformation we have
J=detF =1. (2.10)

A material for which (2.10) is constrained to be satisfied for all deformation
gradients F is said to be incompressible.
The identities

Div(JF 1) =0, div(J7'F)=0 (2.11)

are important tools in transformations between equations associated with the
reference and current configurations, where Div and div are the divergence
operators in B, and B respectively. The first identity in (2.11) can readily
be established by integrating (2.8) over an arbitrary closed surface in B and
applying the divergence theorem and the second similarly by integrating NdA
over an arbitrary closed surface in B,.

From (2.7) we have

|dx|* = (FM) - (FM) |[dX|?* = (FTFM) - M [dX |2, (2.12)

where we have introduced the unit vector M in the direction of dX and -
signifies the scalar product of two vectors. Then, the ratio |dx|/|dX| of the
lengths of a line element in the deformed and reference configurations is given
by

% = [FM]| = [M - (FTFM)]/2 = A(M). (2.13)

Equation (2.13) defines the stretch A(M) in the direction M at X, and we note
that it is restricted according to the inequalities

0 < A(M) < 0. (2.14)
If there is no stretch in the direction M then A(M) = 1 and hence
(FTFM) M =1. (2.15)

If there is no stretch in any direction, i.e. (2.15) holds for all M, then the
material is said to be unstrained at X, and it follows that FTF = I, where I is
the identity tensor. A suitable tensor measure of strain is therefore FTF — I
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since this tensor vanishes when the material is unstrained. This leads to the
definition of the Green strain tensor

E= %(FTF 1), (2.16)

where the 1/2 is a normalization factor. If, for a given M, equation (2.15) holds
for all possible deformation gradients F then the considered material is said to
be inextensible in the direction M.

The deformation gradient can be decomposed according to the polar decom-
positions

F=RU=VR, (2.17)

where R is a proper orthogonal tensor and U, V are positive definite and sym-
metric tensors. Each of the decompositions in (2.17) is unique. Respectively,
U and V are called the right and left stretch tensors.

These stretch tensors can also be put in spectral form. For U we have the
spectral decomposition

3
U=> Ju @u, (2.18)
i=1
where A; > 0, i € {1,2,3}, are the principal stretches, u™, the (unit) eigenvec-
tors of U, are called the Lagrangian principal azes and ® denotes the tensor
product. Note that A(u”) = ); in accordance with the definition (2.13). Sim-
ilarly, V has the spectral decomposition

3
V= Z Av® ® v(i)’ (2.19)
=1
where
v = Ru®, e {1,23). (2.20)

It follows from (2.5), (2.17) and (2.18) that
J = )\1)\2A3. (221)

Using the polar decompositions (2.17) for the deformation gradient F, we
may also form the following tensor measures of deformation:

C=FTF=U?  B=FFT =V2 (2.22)

These define C and B, which are called, respectively, the right and left Cauchy-
Green deformation tensors.
More general classes of strain tensors, i.e. tensors which vanish when there



Elements of the theory of finite elasticity 7

is no strain, can be constructed on the basis that U = I when the material is
unstrained. Thus, for example, we define Lagrangian strain tensors

EM™ = %(U’" -I), m#0, (2.23)

E® =InU, m=0, (2.24)

where m is a real number (not necessarily an integer). Eulerian strain tensors
based on the use of V may be constructed similarly. See, for example, Doyle
and Ericksen (1956), Seth (1964) and Hill (1968, 1970, 1978). Note that for
m = 2 equation (2.23) reduces to the Green strain tensor (2.16). For discussion
of the logarithmic strain tensor (2.24) we refer to, for example, Hoger (1987).

Let p, and p be the mass densities in B, and B respectively. Then, since
the material in the volume element dV is the same as that in dv the mass is
conserved, i.e. pdv = p,dV, and hence, from (2.9), we may express the mass
conservation equation in the form

pr = pJ. (2.25)

1.2.2 Stress tensors and equilibrium equations

The surface force per unit area (or stress vector) on the vector area element da
is denoted by t. It depends on n according to the formula

t =oTn, (2.26)

where o, a second-order tensor independent of n, is called the Cauchy stress
tensor.

By means of (2.8) the force on da may be written as
tda = STNdA4, (2.27)
where the nominal stress tensor 8 is related to o by
S =JFlo. (2.28)

The first Piola-Kirchhoff stress tensor, denoted here by m, is given by 7 = ST
and this will be used in preference to S in some parts of this volume.

Let b denote the body force per unit mass. Then, in integral form, the
equilibrium equation for the body may be written with reference either to B or
B,.. Thus,

/ pbdv + / oTnda = / prbdV + STNdA = 0. (2.29)
B aB , B,



8 R.W. Ogden

On use of the divergence theorem equations (2.29) yield the equivalent equi-
librium equations

dive 4+ pb = 0, (2.30)
DivS + p,b =0, (2.31)

where again div and Div denote the divergence operators in B and B, respec-
tively. The derivation of the pointwise equations (2.30) and (2.31) requires
that the left-hand sides of these equations are continuous (in B and B, respec-
tively). Note that on use of (2.11) and (2.25) equation (2.31) may be converted
immediately to (2.30). In components, (2.31) has the form

OSui

1 =
b_X_a + prby =0, (2.32)

and similarly for (2.30), where S,; are the components of S and b; those of b.
Balance of the moments of the forces acting on the body yields simply o7 =
o, which may also be expressed as

STFT = FS. (2.33)

The Lagrangian formulation based on the use of S and equation (2.31), with
X as the independent variable, is normally preferred in nonlinear elasticity to
the Eulerian formulation based on use of o and equation (2.30) with x as the
independent variable since the initial geometry is known, whereas x depends
on the deformation to be determined.

We now consider the work done by the surface and body forces in a virtual
displacement éx from the current configuration B. By using the divergence
theorem and equation (2.31) we obtain the virtual work equation

/ prb - 6xdV + / (STN)-6xdA= [ tr(SSF)dV, (2.34)
r o8, B,

where the left-hand side of (2.34) represents the virtual work of the body and
surface forces and in the integrand on the right-hand side tr denotes the trace
of a second-order tensor and 6F = Grad x. The term on the right-hand side is
the virtual work of the stresses in the bulk of the material. For a conservative
system this latter work is recoverable and is stored as elastic strain energy (this
will be discussed in Section 1.2.5.1) but in general it includes a dissipative part.
In either case the integrand, which represents the virtual work increment per
unit volume in B,, may be expressed in many alternative forms using different
deformation and strain measures.

For example, using (2.16), (2.17) and the symmetry (2.33), we obtain

tr (S6F) = tr (TMVU) = tr (TASE), (2.35)
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in which we have defined the Biot stress tensor T() (Biot, 1965) and the second
Piola-Kirchhoff stress tensor T(?) (both symmetric) by

T = %(SR +RT8T), T® =8SFT = jF-loF-7. (2.36)
We note the connection
T = -;—(T(z)U + UT®), (2.37)

More generally, the expression in (2.35) may be written in terms of the strain

tensors E(™) given by (2.23) and (2.24) and their (symmetric) conjugate stress
tensors T(™) as

tr (TMGEM™), (2.38)

Note that the examples m = 1 and m = 2 from (2.35) are included in (2.38) as
special cases. The notion of conjugate stress and strain tensors was introduced
by Hill (1968) and applies more generally than to the special class of strain
tensors (2.23). A more detailed discussion can be found in Ogden (1997 ). We
observe that the definition of conjugate stress and strain tensors is independent
of any choice of material constitutive law.

1.2.3 Elasticity

The constitutive equation of an elastic material is given in the form
o =G(F), (2.39)

where G is a symmetric tensor-valued function, defined on the space of defor-
mation gradients F. In general the form of G depends on the choice of reference
configuration and G is referred to as the response function of the material rel-
ative to B,. For a given B,, therefore, the stress in B at a (material) point
X depends only on the deformation gradient at X and not on the history of
deformation. A material whose constitutive law has the form (2.39) is gener-
ally referred to as a Cauchy elastic material. Its specialization to the situation
when there exists a strain-energy function will be considered in Section 1.2.4.
If the stress vanishes in B, then

G@I) =0, (2.40)

and B, is called a natural configuration. If the stress does not vanish in B, then
there is said to be residual stress in this configuration. In a residually-stressed
configuration the traction must vanish at all points of the boundary, so that a
fortiori residual stress is inhomogeneous in character. For detailed discussion of
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residual stress we refer to the work of Hoger and co-workers (see, for example,
Hoger, 1985, 1986, 1993a, b and Johnson and Hoger 1993, 1995, 1998).

1.2.3.1 Objectivity
Suppose that a rigid-body deformation

x"=Qx+c (2.41)

is superimposed on the deformation x = x(X), where Q and c are constants,

Q being a rotation tensor and c a translation vector. Then, the resulting
deformation gradient, F* say, is given by

F* = QF. (2.42)

For an elastic material with response function G relative to B,, the Cauchy
stress tensor, o* say, associated with the deformation gradient F* is o* =
G(F*).

Under the transformation (2.41) o transforms according to the formula

o* =QoQT. (2.43)
The response function G must therefore satisfy the invariance requirement
G(F") = G(QF) = QG(F)Q” (2.44)

for each deformation gradient F and all rotations Q. This expresses the fact
that the constitutive law (2.39) is objective. The terminology material frame-
indifference is also used for this concept of objectivity (see, for example, Trues-
dell and Noll, 1965). In essence, this means that material properties are inde-
pendent of superimposed rigid-body deformations.

A second-order Eulerian tensor, such as o, which satisfies the transforma-
tion rule (2.43) is said to be an (Eulerian) objective second-order tensor. We
now expand on this notion slightly. Let ¢,u, T be (Eulerian) scalar, vector
and (second-order) tensor functions defined on B. Let ¢*,u*, T* be the cor-
responding functions defined on B*, where B* is obtained from B by the rigid
deformation (2.41). The functions are said to be (Eulerian) objective scalar,
vector and tensor functions (or fields) if, for all such deformations,

*=¢, uw=Qu, T =QTQT. (2.45)

We observe that the density p is an example of an objective scalar function
and that the normal vector n, which appears in (2.8), and the traction vector
t, given by (2.26), are examples of objective vector functions, while the left
Cauchy-green deformation tensor B is an objective tensor function.
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It is important to distinguish between the behaviour of Lagrangian and Eule-
rian vector and tensor functions as far the definition of objectivity is concerned.
The vector function N, which is related to n by (2.8), and the right Cauchy-
Green deformation tensor C, given by (2.22), for example, are unchanged under
the transformation (2.41). They are Lagrangian functions defined on B,.. Thus,
objectivity may equally well be defined in terms of Lagrangian functions. An
objective Lagrangian (scalar, vector or tensor) function is one which is un-
changed by the transformation (2.41). Other examples of objective Lagrangian
tensors are the Biot and second Piola-Kirchhoff stress tensors defined in (2.36).
Objective mixed tensors, such as F, which are partly Lagrangian and partly
Eulerian, change either as in (2.42) or its transpose. Thus, the nominal stress
tensor S, given by (2.28), transforms like S* = SQT (for more detailed discus-
sion, see Ogden, 1984b).

We mention here that Lagrangian vectors and tensors can be transformed
into Eulerian vectors and tensors by appropriate ‘push-forward’ operations and
this process is reversed by ‘pull-back’ transformations in the sense described in
Marsden and Hughes (1994); see also Holzapfel (2000). The form of the push-
forward and pull-back transformations depends on whether the vectors and
tensors in question have covariant or contravariant character. For example,
the push forward of the (covariant) Green strain tensor E is F~TEF-!, which
is an Eulerian strain tensor, while the push forward of the (contravariant)
second Piola-Kirchhoff stress tensor T(?) is FT(FT, which is just J times
the (Eulerian) Cauchy stress tensor. Partial push forward or pull back can be
applied to either type of tensor to obtain mixed tensors or to mixed tensors to
obtain Lagrangian or Eulerian tensors.

1.2.3.2 Material symmetry

Let o be the stress in configuration B, and let F and F’ be the deformation
gradients in B relative to two different reference configurations, B, and B!
respectively. We denote by G and G’ the response functions relative to B, and
B., so that

o =G(F) =G'(F). (2.46)
Let P = Grad X’ be the deformation gradient of B, relative to B,., where X is
the position vector of a point in B’.. Then

F = F'P. (2.47)

Substitution of (2.47) into (2.46) then gives G(F'P) = G/(F).
In general, the response of the material relative to B, differs from that relative
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to By, i.e G’ # G. However, for specific P we may have G’ = G, in which case
G(F'P) = G(F) (2.48)

for all deformation gradients F’ and for all such P. Equation (2.46) then gives
o = G(F) = G(F'), and, in order to calculate o, it is not necessary to distin-
guish between B, and B..

The set of tensors P for which (2.48) holds forms a multiplicative group,
called the symmetry group of the material relative to B,. This group charac-
terizes the physical symmetry properties of the material.

Let P be the deformation gradient B, — B., and now we do not assume that
P is a member of the symmetry group. Then, if G is the symmetry group of
the material relative to B, and G’ that relative to B’. these groups are related
according to Noll’s rule

G' =Pgp-1. (2.49)

Clearly, for the special case in which P € G, we have ¢’ = G.

1.2.3.8 Isotropic elasticity

If G is the proper orthogonal group then the material is said to be isotropic
relative to B,, and then

o = G(FQ) = G(F) (2.50)

for all proper orthogonal Q and for every deformation gradient F. Physically,
this means that the response of a small specimen of material is independent of
its orientation in B,.

Before proceeding further we require some definitions and results relating to
isotropic functions of a second-order tensor. Firstly, the scalar function o(T)
of a symmetric second-order tensor T is said to be an 1sotropic function of T if

H(QTQT) = ¢(T) (2.51)

for all orthogonal tensors Q. An isotropic scalar-valued function of T is also
called a scalar invariant of T. It may easily be checked that the principal
invariants of T, defined by

L(T) = tr (T), h(T):%{II(T)z—tr(TZ)], I(T) = detT, (252)

are scalar invariants in accordance with the definition (2.51). It may be shown

that ¢(T) is a scalar invariant of T if and only if it is expressible as a function
of I\(T), I(T), I3(T).
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Secondly, suppose that G(T) is a symmetric second-order tensor function of
T. Then, G(T) is said to be an isotropic tensor function of T if

G(QTQ") = QG(T)Q” (2.53)

for all orthogonal Q. Consequences of this are (i) if G(T) is isotropic then its
eigenvalues are scalar invariants of T, (ii) G(T) is coaxial with T, i.e.

G(T)T = TG(T), (2.54)
and (iif) G(T) is isotropic if and only if it has the representation
G(T) = ¢oIl + 41T + ¢ T?, (2.55)

where ¢o, #1, ¢2 are scalar invariants of T and hence functions of I; (T), Io(T),
I3(T).

The choice Q = RT and use of the polar decomposition F = VR in (2.50)
gives

o=G(V). (2.56)
We then obtain

QG(V)Q" = G(QvQ") (2.57)

for all proper orthogonal Q. In fact, since Q occurs twice on each side of (2.57),
allowing Q to be improper orthogonal does not affect (2.57), which then states
that G(V) is an isotropic function of V in accordance with the definition (2.53).

In particular, for an isotropic elastic material, o = G(V) is coazial with V,
i.e. with the Eulerian principal axes, and we therefore have

o =G(V) =gl + 1V + ¢, V2, (2.58)
where ¢o, ¢1, @2 are scalar invariants of V, i.e. functions of
i1 =L(V)=tr (V) =X+ X + X3, (2.59)
ip = I(V) = %[if —tr (V)] = Aadz + Ash1 + Aty (2.60)
i3 = I3(V) = det V = A g, (2.61)

where the expressions have also been given in terms of the principal stretches
and the notation 4,42,43 has been introduced specifically for the principal
invariants of V (and hence of U). Alternatively, we may write

3
o= Z oiv® @ v, (2.62)

=1
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where
oi=go+dr1hi + 202 i€ {1,2,3)}, (2.63)
and this allows us to introduce the scalar response function g, such that
o = g(Xis Ay M) = 9(Xiy Ay Aj) = o + d1 A + dad?, (2.64)

where (i, j, k) is permutation of (1,2, 3).
The expansion (2.58) may be written, equivalently, in terms of B = V2. For
example,

o = apl + 1B + ayB?, (2.65)
or
o =01+ 5B+ ,3_1B_1, (2.66)

where ag, a1, ag, B, B1,8-1 are scalar invariants of B (and hence of V); see,
for example, Beatty (1987). Connections between these different coefficients
are determined by using the Cayley-Hamilton theorem in the form

V33— Vi4i,V—isI=0 (2.67)

or its counterpart for B. It is convenient in what follows to use the standard

notation Iy, I3, I5 for the principal invariants of B (also of C). Thus, specifically,
we write

I =1I(B) =tr(B) = A2 + A2 + A2, (2.68)
1

I = ,(B) = 5[1% —tr (B?)] = A2A2 + A202 + 222, (2.69)

I3 = I3(B) = det B = A2AZ)\2. (2.70)

In view of the connection (2.28) between S and o we may also define the
response function, H say, associated with S (relative to B,) by

S = H(F) = JF'G(F). (2.71)
The objectivity requirement (2.44) then becomes
H(QF) = HF)QT. (2.72)

A corresponding change for the material symmetry transformation (2.48) can
be written down, and, in particular, for an isotropic elastic solid, we have

H(FQ) = QTH(F). (2.73)
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Moreover, it follows from (2.73) that
H(F) = HU)RT = RTH(V), (2.74)

with H(U) being symmetric and coaxial with U.

1.2.3.4 Internal constraints

In Section 1.2.1 the (internal) constraints of incompressibility and inextensibil-
ity were mentioned. More generally, a single constraint may be written in the
form

C(F) =0, (2.75)

where C is a scalar function. Equation (2.75) holds for all possible deformation
gradients F. For the incompressibility and inextensibility constraints we have,
respectively,

C(F)=detF -1, C(F)=M.(FTFM)-1. (2.76)

Since any constraint is unaffected by a superimposed rigid deformation, C
must be an objective scalar function, so that

C(QF) = C(F) (2.77)
for all rotations Q. In particular, the choice Q = R yields
C(F) =C(U). (2.78)

For incompressibility the C(U) given by (2.76); is a scalar invariant of U, but
this is not the case for a general constraint function C(U).

The constraint (2.75) defines a hypersurface in the (nine-dimensional) space
of deformation gradients. Any stress in the normal direction to the surface (ie.
the direction C/F) does no work in any (virtual) incremental deformation
6x compatible with the constraint since tr [(8C/0F)6F] = 0. The stress is
therefore determined by the constitutive law, in the form (2.71) for example,
only to within an additive contribution parallel to the normal. Thus, for a
constrained material the stress-deformation relation (2.71) is replaced by

S = H(F) + qg—g, (2.79)

or, in terms of Cauchy stress,

acC
_ -1
o=GF)+qJ F——aF, (2.80)

where g is an arbitrary (Lagrange) multiplier. The term in q is referred to as
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the constraint stress since it arises from the constraint and is not otherwise
derivable from the material properties.
For incompressibility we have 8C/0F = F~! since J = 1 and hence

S=H(F)+q¢F!, o=G(F)+d, (2.81)

I again being the identity tensor, while for inextensibility C/8F = 2M ® FM
and

S = H(F) + 2¢M ® FM, o =G(F) +2¢J 'FM @ FM. (2.82)

In the case of (2.81), if the material is isotropic then G(F) is given by (2.58)
but with the term in ¢y omitted since it may be absorbed into q and ¢; and
¢2 being functions of the two remaining independent invariants.

Another constraint, called the Bell constraint, is the focus of Chapter 2
and will not therefore be discussed here. If there is more than one constraint
then an additive constraint stress has to be included in the expression for the
stress in respect of each constraint. However, the constraints must be mutually
compatible since, as illustrated in Chapter 2, the incompressibility and Bell
constraints are not compatible.

1.2.4 Hyperelasticity

As mentioned at the beginning of Section 1.2.3, the notion of elasticity intro-
duced there is referred to as Cauchy elasticity. From the point of view of both
theory and applications a more useful concept of elasticity, which is a special
case of Cauchy elasticity, is hyperelasticity (or Green elasticity). In this the-
ory there exists a strain-energy function (or stored-energy function), denoted
W = W(F), defined on the space of deformation gradients such that (for an
unconstrained material)

oW ;) 4
= 73?, O'—G(F)—J Fﬁ

The work increment in (2.35) is then converted into stored energy and is simply
tr (SOF) = 6W. Equation (2.83) is the stress-deformation relation or consti-
tutive relation for an elastic material which possesses a strain-energy function,
W being defined per unit volume in B, and representing the work done per
unit volume at X in changing the deformation gradient from I to F. In com-
ponents, the first equation in (2.83) is written S,; = 8W/AF,,, which provides
the convention for ordering of the indices in the partial derivative with respect
to F.

Henceforth in this chapter we restrict attention to hyperelasticity and regard

S = H(F) (2.83)
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an elastic material as characterized by the existence of a strain-energy function
such that (2.83) hold. We take W and the stress to vanish in B,, so that

W(I) = o, %%V(I) =0, (2.84)

the latter being consistent with (2.40).
We note here the modification of (2.83) appropriate for incompressibility.
From (2.81) we obtain

w
S=-—=-pF!, 0'=F%F——pl, detF =1, (2.85)

where ¢ has been replaced by —p, with p, in standard notation, then referred
to as an arbitrary hydrostatic pressure. Equations (2.85) are stress-deformation
relations for an incompressible elastic material. The corresponding expressions
for the constraint of inextensibility may be read off from (2.82).

1.2.4.1 Objectivity and Material Symmetry

The elastic stored energy is required to be independent of superimposed rigid
deformations of the form (2.41) and it therefore follows that

W(QF) = W(F) (2.86)

for all rotations Q. A strain-energy function satisfying this requirement is said
to be objective.

Use of the polar decomposition (2.17) and the choice Q = R7 in (2.86) shows
that

W(F) = W(U). (2.87)

Thus, W depends on F only through the stretch tensor U and may therefore be
defined on the class of positive definite symmetric tensors. Since E(V) = U — I,
as defined in (2.23), is conjugate to the Biot stress tensor T}, which we write
henceforth as T, we have

ow
T= 30 (2.88)
for an unconstrained material and
oW 1 _

for an incompressible material. Note that when expressed as a function of U

the strain energy automatically satisfies the objectivity requirement.
Mathematically, there is no restriction so far other than (2.84) and (2.86)

on the form that the function W may take, but the predicted stress-strain
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behaviour based on the form of W must on the one hand be acceptable for
the description of the elastic behaviour of real materials and on the other hand
make mathematical sense.

Further restrictions on the form of W arise if the material possesses sym-

metries in the configuration B,. For a hyperelastic material the symmetry
requirement (2.48) is replaced by

W (F'P) = W(F') (2.90)

for all deformation gradients /. This states that the strain-energy function is
unaffected by a change of reference configuration with deformation gradient P
which is a member of the symmetry group of the material relative to B,.

1.2.4.2 Isotropic hyperelasticity

To be specific we now consider isotropic elastic materials, for which the sym-
metry group is the proper orthogonal group. Then, we have

W(FQ) = W (F) (2.91)

for allrotations Q. Bearing in mind that the Q’s appearing in (2.86) and (2.91)
are independent the combination of these two equations yields

w(QuUQT) = w(U) (2.92)

for all rotations Q, or, equivalently, W(QVQ”) = W (V). Equation (2.92)
states that W is an isotropic function of U. It follows from the spectral de-
composition (2.18) that W depends on U only through the principal stretches
A1, A2, Az. To avoid introducing additional notation we express this dependence
as W (A1, Az, A3); by selecting appropriate values for Q in (2.92) we may deduce
that W depends symmetrically on A;, g, Az, i.e.

W(A1:>\2y)\3) = W(Al))‘S’)Q) = W()\27)‘1))‘3)' (293)

A consequence of isotropy is that T is coazial with U and hence, in parallel
with (2.18), we have

3
T=> tau®gu, (2.94)

i=1

where t;, ¢ € {1,2,3} are the principal Biot stresses. For an unconstrained
material,

ow

ti:a_,\i’

(2.95)
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and for an incompressible material this is replaced by
ow
X\

For later reference, we note here that the principal Cauchy stresses gi, 1 €
{1, 2,3}, are given by

ti =

AMAgAz = 1. (2.96)

ow
Joy = A\j—— o, (2.97)
and
oW
g; /\'_671 - D )\1)\2/\3 =1 (298)

for unconstrained and incompressible materials respectively. Note that in (2.97)
and (2.98) there is no summation over the repeated index 1.

With reference to (2.63) it can be deduced from (2.97), by regarding W as a
function of i1, 42, i3, that the coefficients ¢o, 1, ¢2 are given by

W L (BW oW _, oW
bo=G B (G tags), k=il (299
Similarly, the coefficients ao, 01, 3 in (2.65) are given by
oW - ow ow —1/20W
— oyi/29W —oy-l/2 I — _o7-1/2
20=2L" 5 @ (61 +hyp ) =2 3,
(2.100)

where W is now regarded as a function of Iy, I;,I5. For an incompressible
material the term in ¢, or ag as appropriate, is absorbed into p and i3 = I. 3=1
in the remaining terms in (2.99) and (2.100).

We emphasize that, as follows from (2.74), for an isotropic elastic material
SR is symmetric and we have

3
S=TR" = t;u® gv(®. (2.101)

t=1
The first equation in (2.101) is a polar decomposition of S analogous to (2.17),
except that it is not unique. This equation has important consequences for con-

siderations of uniqueness and stability and will be discussed briefly in Section
1.4.4.

1.2.4.3 Examples of strain-energy functions
There are numerous specific forms of strain-energy function in the literature
both for compressible and incompressible materials, mainly isotropic, and we
make no attempt to catalogue them here. Many will be used in the various
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chapters of this volume. Here we just mention, for purposes of illustration,
a few examples of strain-energy functions for incompressible isotropic materi-
als. Many, but not all, of the compressible strain-energy functions used in the
literature are obtained from their incompressible counterparts by addition of
a function of the volume measure J and multiplication of the other terms by
powers of J. Examples of compressible strain-energy functions are contained
in Chapter 4, for example.

As already noted the strain energy of an isotropic elastic solid can be regarded
either as a symmetric function of the principal stretches or as a function of three
independent invariants, such as 4,145,145 or I, I5,I3. For an incompressible
material (2.10) holds, i3 = I = 1 and hence the strain energy depends on only
two independent invariants. An important example is the Mooney- Rivlin form
of strain energy, defined by

W=Ci(li -3)+Co(l2 =3) = Ci(M + A3+ A} = 3) + C. (072 + A5 2 + 052 - 3),
(2.102)

where C1, C; are constants and A;A;A3 = 1. When C» = 0 this reduces to the
so-called neo-Hookean strain energy

1 1
W=sul-3)= 5y(A§ + A3+ A% -3), (2.103)

where C; has been replaced by /2, (> 0) being the shear modulus of the
material in the undeformed configuration. These two forms of energy function
played key roles in the development of the subject of finite elasticity, partic-
ularly in respect of its connection with rubber elasticity. For reviews of this
aspect we refer to Ogden (1982, 1986) in which more details are given of differ-
ent forms of strain-energy functions appropriate for rubberlike solids. Equation
(2.102) constitutes the linear terms in a polynomial expansion of W in terms of
Iy — 3 and I, — 3, special cases of which are used extensively in the literature.

Another special form of strain energy worthy of mention is the Varga form,
defined by

W =2u(i; - 3) = 200y + Az + A3 — 3), (2.104)

which is used extensively in basic stress-strain analysis (Varga, 1966). See also
Chapter 5 in this volume.

Each of the strain-energy functions (2.102)~(2.104) is of the separable form
W = w(A1) + w(r2) + w()s), (2.105)

which was introduced by Valanis and Landel (1967). Equivalent to (2.105) is
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the expansion

oo
W=D pm(A8™ + 2™ + 25" — 3)/orm (2.106)

m=1
in terms of powers of the stretches, where each p,, and a,, is a material con-
stant, the latter not necessarily being integers (Ogden, 1972, 1982). For prac-
tical purposes the sum in (2.106) is restricted to a finite number of terms,
while, for consistency with the classical theory, the constants must satisfy the

requirement

N
D Hmtim = 24, (2.107)
m=1

where N is a positive integer and u is again the shear modulus of the material
in the natural configuration. The counterpart of (2.107) for the Valanis-Landel
material is

w”’(1) + w'(1) = 2p. (2.108)

In respect of (2.105) the principal Cauchy stresses are obtained from (2.98)
in the form

and the specializations appropriate for (2.102)—(2.104) are then easily read off.
For the neo-Hookean solid, for example, we have

o =uB—pl, (2.110)
where B is the left Cauchy-Green deformation tensor defined in (2.22).

1.2.4.4 Anisotropy: fibre-reinforced materials

For a general discussion of anisotropic elasticity, including the crystal classes,
we refer to Green and Adkins (1970) or Truesdell and Noll (1965), for example.
Here, we illustrate the structure of the strain-energy function of an anisotropic
elastic solid for the example of transverse isotropy, in which there is a sin-
gle preferred direction, and the extension of this to the case of two preferred
directions. These are important examples in practical applications to fibre-
reinforced materials, such as high-pressure hoses and soft biological tissues.
Firstly, we consider transverse isotropy. Let the unit vector M be a pre-
ferred direction in the reference configuration of the material. The material
response is then indifferent to arbitrary rotations about the direction M and
by replacement of M by —M. Such a material can be characterized with a
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strain energy which depends on F and the tensor M ® M, as described by
Spencer (1972, 1984); see, also, Rogers (1984a) and Holzapfel (2000). Thus,
we write W(F, M ® M) and the required symmetry reduces W to dependence
on the five invariants

I, I, Is, Iy = M- (CM), Is = M - (C*M), (2.111)

where I, I, I3 are defined in (2.68)—(2.70). The resulting nominal stress tensor
is given by

S = 2W FT + 2Wy(II — C)FT + 2L W3F~! + 2W,M @ FM
+2Ws(M ® FCM + CM @ FM), (2.112)

where W; = 0W/0I;,i = 1,...,5. For an isotropic material the terms in
W4 and Wy are omitted. Equation (2.112) describes the response of a fibre-
reinforced material with the fibre direction corresponding to M locally in the
reference configuration. For an incompressible material the dependence on I3
is omitted and the Cauchy stress tensor is given by

o=—-pl+2W;B + 2W2(11B - B2) + 2W4sFM @ FM
+2W5(FM ® BFM + BFM g FM), (2.113)

from which the symmetry of o can be seen immediately. Note that in (2.113)
the left Cauchy-Green tensor B has been used.

When there are two families of fibres corresponding to two preferred direc-
tions in the reference configuration, M and M’ say, then, in addition to (2.111),
the strain energy depends on the invariants

Is =M'-(CM'), I =M’ - (C*M), Iy = M - (CM'), (2.114)

and also on M - M’ (which does not depend on the deformation); see Spencer
(1972, 1984) for details. Note that I3 involves interaction between the two
preferred directions, but the term M - (C2M’), which might be expected to
appear in the list (2.114), is omitted since it depends on the other invariants and
on M-M'. It suffices here to give the Cauchy stress tensor for an incompressible
material. This is

o = —pl +2W,B + 2W,(I,B - B?) + 2W,FM @ FM
+ 2W5(FM ® BFM + BFM ® FM) + 2WFM’ @ FM'
+2W7(FM' @ BFM’ + BFM' @ FM')
+ We(FM ® FM' + FM' @ FM), (2.115)

where the notation W; = OW/8I; now applies for i = 1,...,8. In the context of
finite deformation theory very few boundary-value problems have been solved
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for either transversely isotropic materials or for materials with two preferred
directions. An account of such results is given in Green and Adkins (1970), but
relatively little progress has been made since the publication of this book as
far as obtaining closed-form solutions is concerned. For materials with one or
two families of inextensible fibres some basic results are contained in Spencer
(1972, 1984) and Rogers (1984b). However, there is very little in the literature
concerned with specific forms of strain-energy function based on the invariants
(2.111) or (2.111) combined with (2.114), although, in the context of mem-
brane biomechanics, special forms of (2.113) have been used; see, for example,
Humphrey (1995) for references.

1.2.5 Boundary-value problems

We now consider the equilibrium equation (2.31) together with the stress-
deformation relation (2.83), for an unconstrained material, and the deformation
gradient (2.3) coupled with (2.1). Thus,

Div (B_W) +prb=0, F=Gradx, x=x(X), XeB,. (2.116)

OF
A boundary-value problem is obtained by supplementing (2.116) with appro-
priate boundary conditions. Typical boundary conditions arising in problems
of nonlinear elasticity are those in which x is specified on part of the bound-
ary, OBf C OB, say, and the stress vector on the remainder, OB7, so that
0B7 U 9B} = 0B, and 8B% N AB] = (). We write

x = £¢(X) on dB7, (2.117)
STN = 7(F, X) on 687, (2.118)

where £ and T are specified functions. In general, T may depend on the de-
formation and we have indicated this in (2.118) by showing the dependence
of 7 on the deformation gradient F. If the surface traction defined by (2.118)
is independent of F it is referred to as a dead-load traction. If the boundary
traction in (2.118) is associated with a hydrostatic pressure, P say, so that
on = —Pn, then 7 depends on the deformation in the form

T=-JPF TN ondB. (2.119)

In general, when the dependence on F is retained, (2.118) is referred to as
a configuration dependent loading (Sewell, 1967). The basic boundary-value
problem of nonlinear elasticity is characterized by (2.116)-(2.118).



24 R.W. Ogden

In components, the equilibrium equation in (2.116) can be written

1 6%,- b
Asisi gx 0%, TP =0 (2.120)
for ¢ € {1, 2,3}, where the coefficients A}nﬂj are defined by
W
1
Atlriﬁj = Aﬂjai = m, (2121)

the pairwise symmetry of the indices thereby being emphasized.

When coupled with suitable boundary conditions, equation (2.120) forms a
coupled system of three second-order quasi-linear partial differential equations
for x; = xi(X4). The coefficients A}nﬁj are, in general, nonlinear functions of
the components of the deformation gradient. We emphasize that here we are
using Cartesian coordinates; expressions for the equilibrium equations in other
coordinate systems are not given here but can be found in Ogden (1997), for
example.

For unconstrained materials very few explicit solutions have been obtained
for boundary-value problems, and these arise for very special choices of the
form of W and for relatively simple geometries. References are given in Ogden
(1997), for example, and an up-to-date account is contained in Chapter 4. For
incompressible materials the corresponding equations, obtained by substituting
(2.85); into (2.31) to give

2
A},iﬂjg;;%g - g—z + prb; =0 (2.122)

subject to (2.10), where the coefficients are again given by (2.121). These
have yielded more success, and we refer to Green and Zerna (1968), Green and
Adkins (1970) and Ogden (1997) for details of the solutions, many of which
are based on the pioneering work of Rivlin (see, for example, Rivlin, 1948a, b,
1949a, b; references to further work by Rivlin and co-workers can be found in,
for example, Truesdell and Noll, 1965 and Green and Zerna, 1968; the edited
papers of Rivlin are provided in the volume by Barenblatt and Joseph, 1996).
See also Chapters 3, 4, and 5 in this volume for further discussion of boundary-
value problems. Note that, exceptionally, for the neo-Hookean form of strain
energy (2.103), the coefficients A},wj are constant and given by

.Acln-ﬁj = /idijtsag. (2123)

The equations (2.122), although appearing linear in this case, are in general
nonlinear because of the term in p.

In order to analyze such boundary-value problems additional information
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about the nature of the function W is required. This information may come
from the construction of special forms of strain-energy function based on com-
parison of theory with experiment for particular materials, may arise naturally
in the course of solution of particular problems, or may be derived from mathe-
matical considerations relating to the properties that W should possess in order
for existence of solutions to be guaranteed, for example. This important aspect
of the theory is not examined to any great extent in this chapter, but reference
can be made to, for example, Ciarlet (1988) or Ogden (1997) for discussion of
this matter. In this connection, however, we now examine certain aspects of
the structure of the equations.
Equations (2.120) are said to be strongly elliptic if the inequality

AbipimimiNaNg >0 (2.124)

holds for all non-zero vectors m and N. Note that this inequality is independent
of any boundary conditions. Strong ellipticity ensures, in particular, that in an
infinite medium infinitesimal motions superimposed on a finite deformation do
not grow exponentially (see Section 1.6.3.1).

For an incompressible material the strong ellipticity condition associated
with (2.122) again has the form (2.124) but the incompressibility constraint
now imposes the restriction

m-n=290 (2.125)
on the (non-zero) vectors m and n, where n, the push forward of N, is defined
by

F'n=N. (2.126)

Note that N and n here are not related to the surface normal vectors defined
in Section 1.2.1.

In terms of n the strong ellipticity condition (2.124) may be written
AbpigiMiMmjnpng > 0, (2.127)

where Ag,;,; are related to AL,5. by

Atpias = J_lppanﬁAéwj- (2.128)

For an isotropic material necessary and sufficient conditions for strong ellip-
ticity to hold in two dimensions for unconstrained and incompressible materials
will be given in Section 1.4.2.2. The corresponding conditions for three dimen-
sions are quite complicated and are not therefore given here. We refer to Zee
and Sternberg (1983) for incompressible materials and Simpson and Spector
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(1983), Rosakis (1990) and Wang and Aron (1996) for unconstrained materi-
als. See also Hill (1979).

Failure of ellipticity in the sense that equality holds in (2.127) for some
specific m and n plays a very important role in connection with the emergence
of solutions with discontinuous deformation gradients. For discussion of this
see, for example, Knowles and Sternberg (1975, 1977) and Chapter 12 in this
volume, which contains more detailed references to work on this topic.

There are some important situations where simplifications of the governing
equations (2.120) or (2.122) arise. For example, for plane strain deformations,
equation (2.120) reduces to a pair of equations for z, = Xa(Xgs), where the
Greek indices have the range {1,2}. A further simplification arises for anti-
plane shear deformations, for which (2.120) reduces to a single quasi-linear
equation for a scalar function z = x(X,), @ € {1,2}. For a review of anti-
plane shear see, for example, Horgan (1995).

1.2.5.1 Variational structure

We now take the body force in (2.34) to be conservative so that we may write
b = —grad ¢, (2.129)

where ¢ is a scalar field defined on points in B and grad denotes the gradient
operator in B. Since we are considering an elastic material with strain-energy
function W, it follows that the virtual work equation (2.34) can be expressed
in the form

) / (W + pr¢)dV — / (STN) - 6xdA = 0. (2.130)
B, o8B,

In view of the boundary condition (2.117) we have 6x = 0 on 6BZ, and
(2.130) becomes

5 / W +p$)dV - [ 7.6xdA =0, (2.131)
B, a8

For illustrative purposes and for simplicity we now take T to be independent

of the deformation and we write 7 = grad (7 - x), so that (2.131) becomes

5{/3 W+p,0)dV— [ . di} =0. (2.132)

aBr
If we regard dx as a variation of the function X, then (2.132) provides a vari-
ational formulation of the boundary-value problem (2.116)—(2.118) and can be
written 6E' = 0, where E is the functional defined by

E{x} = /B {W(Grad x) + pré(x)} dV — /azsf T xdA. (2.133)
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In (2.133) x is taken in some appropriate class of mappings (for example,
the twice continuously differentiable mappings we have agreed to consider in
this chapter) and to satisfy the boundary condition (2.117). Similarly for the
admissible variations dx subject to §x = 0 on OBZ.

Then, starting from (2.133) with x in this class, we obtain, after use of the
divergence theorem and the boundary conditions on 882,

$E = —/ (DivS + p,.b) - 6x dV +/ (STN - 7) - 6x dA.
B, o8y
The variational statement then takes the form §E = 0 for all admissible dx
if and only if x is such that, with F = Gradx and S given by (2.83); (for
the unconstrained case), the equilibrium equations (2.31) and the boundary
conditions (2.118) are satisfied. In other words, E is stationary if and only if x
is an actual solution (not necessarily unique) of the boundary-value problem.
As will be discussed in Section 1.4.3, the energy functional plays an important
role in the analysis of stability for the dead-load problem. Detailed discussion of
variational principles, including stationary energy, complementary energy and
mixed principles in the context of nonlinear elasticity is contained in Ogden
(1997); technical mathematical aspects are discussed in Ciarlet (1988), Marsden
and Hughes (1983) and the paper by Ball (1977), for example.

1.3 Examples of boundary-value problems
1.3.1 Homogeneous deformations
1.8.1.1 Isotropic materials

We consider first some elementary problems in which the deformation is homo-
geneous, that is for which the deformation gradient F is constant.
A pure homogeneous strain is a deformation of the form

1= MX1, 2 =XxX2, z3=A3X3, (8.1)

where Aj, Az, A3 are the principal stretches, and, since the deformation is ho-
mogeneous, they are constants. For this deformation F = U = V,R = I
and the principal axes of the deformation coincide with the Cartesian coor-
dinate directions and are fixed as the values of the stretches change. For an
unconstrained isotropic elastic material the associated principal Biot stresses
are given by (2.95). These equations serve as a basis for determining the form
of W from triaxial experimental tests in which A1, Az, A3 and ¢1, t2,t3 are mea-
sured. If biaxial tests are conducted on a thin sheet of material which lies in the
(X1, X3)-plane with no force applied to the faces of the sheet then equations
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(2.95) reduce to

ow ow 114
1= 7 (A A2,3),  t2 = 2=(A1, A2, 03), t3 = (A1, A2, A3) =0,
(9)\1 8)\2

O3
(3.2)

and the third equation gives A3 implicitly in terms of \; and A, when W is
known.

The biaxial test is more important in the context of the incompressibility
constraint

t

/\1/\2)\3 =1 (33)

since then only two stretches can be varied independently and biaxial tests
are sufficient to obtain a characterization of W. The counterpart of (2.95) for
the incompressible case is given by (2.96), or, in terms of the principal Cauchy
stresses, (2.98). It is convenient to make use of (3.3) to express the strain energy
as a function of two independent stretches and for this purpose we define

W, A2) = Wi, dg, ATIAFY). (3.9)
This enables p to be eliminated from equation (2.98) and leads to
oW oW
03 = A —— — 03 = Ag——1. .
01— 03 W 02 — 03 = A W (3.5)

It is important to note that, because of the incompressibility constraint, equa-
tion (3.5) is unaffected by the superposition of an arbitrary hydrostatic stress.
Thus, without loss of generality, we may set o3 = 0 in (3.5). In terms of the
principal Biot stresses we then have simply

oW 1%

ty = 5):, ty = ‘5)\—2, (8.6)

which provides two equations relating A;, A2 and t1,¢, and therefore a basis for
characterizing W from measured biaxial data.

There are several special cases of the biaxial test which are of interest, but we
just give the details for simple tension, for which we set t, = 0. By symmetry,
the incompressibility constraint then yields Ay = A3 = )\1'1/ 2, The strain energy
may now be treated as a function of just A;, and we write

W(A1) = W, A7), (3.7)

and (3.6) reduces to
t = W’()\l), (3.8)

where the prime indicates differentiation with respect to \;.
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Next we consider the simple shear deformation defined by
z1 = X1 +vX2, z2=2Xs, z35=Xs, (3.9)

where 7 is a constant, called the amount of shear. This is a plane strain defor-
mation and it provides an illustration of a deformation in which the orientation
of the principal axes of strain varies with the magnitude of the deformation (in
this case with «).

For an incompressible elastic solid the Cauchy stress tensor is given by the
second equation in (2.85). If this is expressed in terms of the invariants I )

defined by (2.68)—-(2.69) then, for an isotropic material, the components of o
are

o1 =-p+ 2(1 + ’)’2)W1 + 2(2 + 72)W27
02 = —p+2W1+4Ws, 013 = 27(W; + Wa), (3.10)
033 = —p+2W1 + 22+ V)W3, 013 = 093 = 0,

evaluated for I1 = I, = 3 + 2.
In the (X1, X»)-plane the Eulerian principal axes v(1), v(2) are given by

v() =cosge; +singe;, v = —singe, + cos ¢ ey, (3.11)
where ey, e; are the Cartesian axes and the angle ¢ is given by
tan2¢ = 2/4. (3.12)

Since, for an isotropic material, o is coaxial with the Eulerian principal axes
its components may, alternatively, be given in terms of its principal values by

011 = 010082 ¢ + o3 5in P, 023 = 0y sin? ¢ + o3 cos? B, (3.13)

012 = (01 — 02)singcos ¢, 033 = 05. (3.14)

The principal Cauchy stresses are given in terms of the principal stretches,

which, for the considered deformation, are Aj, Ay = /\1_1,/\3 = 1, where ) is
related to the amount of shear v by

A=A =+~ (3.15)

and we have taken A; > 1 to correspond to v > 0.

Instead of regarding W as a function of I, and I, or of the stretches we may
take it to be a function of v and define

W) =W, A0, (3.16)
subject to (3.15). Then, we have simply

o12=W'(y), 011 - 092 =v013. (3.17)
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The second equation in (3.17) is an example of a universal relation, ie. a
connection between the components of stress which holds irrespective of the
specific form of strain-energy function considered (within, in this case, the class
of incompressible isotropic elastic solids). A detailed treatment of universal
relations, including discussion of Ericksen’s celebrated results (Ericksen, 1954,
1955), is contained in Chapter 3 in this volume.

Simple shear is an important example of a finite deformation. A general
discussion of shear in the finite deformation context is provided in Chapter 6.

1.3.1.2 Fibre-reinforced materials

Again we consider the pure homogeneous strain defined by (3.1) and now we
include two fibre directions, symmetrically disposed in the (X7, X2)-plane and
given by

M =cosce; +sinae;, M =cosae; —sinaes, (3.18)

where the angle « is constant and e, e; denote the Cartesian coordinate di-
rections. The invariants I, I; are given by (2.68) and (2.69) subject to the
incompressibility constraint (3.3), while with the definitions in (2.111) and
(2.114) we use (3.18) to obtain

I4=Is=)\ cos a+)\2s1n a, 15~I7—Alcos a+)\2s1n a,

Is = A cos?a — M2sin a. (3.19)
From (2.115) we then calculate the components of o as

o = —p 4+ 2W1A] + 2Wo (1102 — AY) + 2(Wy + W + W) A2 cos? o

+ 4(Ws + Wr)At cos? a, (3.20)
022 = —p + 2W1A3 + 2Wa (1103 — X3) + 2(Wy + We — We)A2sin? o

+ 4(Ws + Wo)A§sin? o, (3.21)
012 = 2[Wys — We + (Ws — Wy) (A2 + A2)] A Az sinacos a, (3.22)
033 = —p 4+ 2W1 A2 + 2Wo (122 — AD), 013 = 093 = 0. (3.23)

In general, since 012 # 0, shear stresses are required to maintain the pure
homogeneous deformation and the principal axes of stress do not coincide with
the Cartesian axes. However, in the special case in which the two families of
fibres are mechanically equivalent the strain energy must be symmetric with
respect to interchange of Iy and I¢ and of I5 and I;. Since, for the considered
deformation, we have Iy = Ig,Is = I it follows that Wy = Ws, Wy = Wy
and hence that o1 = 0. The principal axes of stress then coincide with the
Cartesian axes and 011, 022, 033 are the principal Cauchy stresses.
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Since Iy, I; depend symmetrically on A1, Az, Az and Iy, I's, Iy depend on Ay, Aq
and a, we may regard the strain energy as a function of A1, Az, A3, subject to
(3.3), and a. We write W(Ay, Az, A3, @), but it should be emphasized that,
unlike in the isotropic case, W is not symmetric with respect to interchange of
any pair of the stretches. It is straightforward to check that

oW B ow _ oW
o1 =0y = )\13—)\1 -p, Op=0y= )\28_)\2 —p, 033=03 =)\35x3- -

(3.24)

As in the isotropic case we make use of (3.3) to recast the strain energy as a
function of A; and A; and define

W (A1, A2, 0) = W(A, A2, ATIA L, @), (3.25)
which is not symmetric in A1, A2 in general. Then, we obtain from (3.24)
oW oW
g1 — 03 =)\15)":, 0'2—0'3=A25/\—2, (326)

which are identical in form (but not in content) to equations (3.5).

For the simple shear deformation (3.9) the situation is more complicated.
The invariants are given by

Il=12=3+’72, I3=1,

Iy =1+~vsin2a++%sin’@, Is =1—vsin2a++?sin’aq,

Is = (1+7%) cos’ a + 27(2 + y*) sinacosa + (v! + 3y + 1) sin’a, (3.27)
I7 = (1+7*)cos’ o — 29(2 + ¥*) sinacosa + (v* + 372 + 1) sin’
Ig = cos?a — (14 +?)sin?a.

)

The components of the Cauchy stress tensor are calculated as

g1 = —p+ 2W1(1 + ’)’2) + 2W2(2 + ’)’2)
+2[Wy + We + Ws + 2(W5 + Wo)(1 + 42)] cos? o
+4[Wy — W + (Ws — Wr)(3 +~2)}ysinacos o
+2[Wy + W — Wg + 2(Ws + Wo)(2 + 72)]y?sin? q,
022 = —p+A4W1 + AW, + 2(W, + W — We) sin o (3.28)
+4(Ws — Wy)ysinacosa + 4(Ws + Wo)(1 + 7?) sin’
o12 = 2(W1 + Wa)y 4+ 2(Ws — We)sinacosa + 2(W, + We
—Ws)ysin® a + 2(Ws + Wr)y[cos? o + (3 + 42) sin? o],
033 = —p+2W1)\§+2W2(I1)\§ —/\g), o013 = 023 = 0.

By defining W (, @) analogously to (3.18) through the invariants (3.27) with
(3.17), it is straightforward to show that
ow

012 = Fy—, (329)
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exactly as in the isotropic case. Here, however, the universal relation (3.17),
does not hold. This is a reflection of the fact that the principal axes of Cauchy
stress do not coincide with the Eulerian axes. Indeed, if ¢* denotes the analogue
of ¢, which is given by (3.12), for the principal stress axes then, in general, @*
is given by

20‘12

tan2¢* = (3.30)

o11 — 022’
and, since the right-hand side of (3.30) is not equal to 2/, we see that ¢* # ¢.

1.3.2 Extension and inflation of a thick-walled tube

In this section we examine an example of a non-homogeneous deformation.
Other examples can be found in the texts cited in Section 1.1. We consider a
thick-walled circular cylindrical tube whose initial geometry is defined by

A<R<B, 0<O©<2r 0<Z<IL, (3.31)

where A, B, L are positive constants and R, ©, Z are cylindrical polar coordi-
nates. The tube is deformed so that the circular cylindrical shape is maintained,
and the material of the tube is taken to be incompressible. The resulting de-
formation is then described by the equations

rP-a? =X R2- 4%, =0, z=)\72, (3.32)
where 7, 6, z are cylindrical polar coordinates in the deformed configuration, A,

is the axial stretch and a is the internal radius of the deformed tube.

The principal stretches A, Az, A3 are associated respectively with the radial,
azimuthal and axial directions and are written

AL=ATIACL N, = % =X\ As=A,

wherein the notation A is introduced. It follows from (3.32) and (3.33) that

(3.33)

R? B?
M, -1= 25(’\2’\“ ~-1)= F(,\iAz ~ 1), (3.34)
where
Ae =afA, XN =b/B. (3.35)
For a fixed value of A, the inequalities
MNA, 21, A2A> N (3.36)

hold during inflation of the tube, with equality holding if and only if A = A2
for A< R<B.
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We use the notation (3.4) for the strain energy but with A, = A and A3 = ),
as the independent stretches, so that

WA = WAL AN, (3.37)
Hence
09 — 01 =)\W,\, g3 — 01 =/\2WA,; (338)

where the subscripts indicate partial derivatives.
The equilibrium equation (2.30) in the absence of body forces reduces to the
single scalar equation

d 1
_(;’71 + ;(01 —03)=0 (3.39)

in terms of the principal Cauchy stresses, and to this are adjoined the boundary
conditions

o1 = —P onR=A
1Yo onR=B

corresponding to pressure P (> 0) on the inside of the tube and zero traction
on the outside.

By making use of (3.32)—(3.35) the independent variable may be changed
from r to A and integration of (3.39) and application of the boundary conditions
(3.40) yields

(3.40)

N R
o ow
P=[ (A2, —1)"1=—=dx. (3.41)
A oA
Since, from (3.34), A, depends on A, equation (3.41) provides an expression
for P as a function of A\, when ), is fixed. In order to hold A, fixed an axial
load, N say, must be applied to the ends of the tube. This is given by
\ . N
a oW oW
2 _ /y2 _ 2y _ 1\-2 AN S A 2
N/nA? = (A2, — 1) A RN (2,\z . ),\d,\ +PX2. (3.42)
For a thin-walled (membrane) tube the above results may be simplified since
integration through the wall thickness is no longer needed. A general account
of nonlinear elastic membrane theory is contained in Chapter 7, while Chapter
8 is concerned with elastic surfaces.
By analogy with the analysis in Section 1.3.1.2, for fibre reinforced materials
with the fibre directions M and M’ locally in the (8, Z)-plane symmetrically

disposed with respect to the axial direction the strain energy may be written
in the form

W A, @), (3.43)
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where, we recall, W is not symmetric in A and A,. Furthermore the formulas
(3.41) and (3.42) again apply and are valid if the fibre directions depend on
the radius, i.e. if a depends on R.

1.4 Incremental equations

1.4.1 Incremental deformation
Suppose that a solution x to the boundary-value problem (2.116)—(2.118) is
known and consider the problem of finding solutions near to x when the bound-
ary conditions are perturbed. Let x’ be a solution for the perturbed problem
and write x’ = x'(X). Also, we write

% =x —x = x'(X) - x(X) = x(X) (4.1)
for the difference of the solutions, so that

Gradx = Grad x’ — Gradx = F. (4.2)

Note that F is linear in X and that in this expression no approximation has been
made. In what follows, however, we shall consider approximations in which all
terms are linearized in the incremental deformation % and its gradient (4.2).
Quantities with a superposed dot indicate the appropriate linearization.
From (2.17) we calculate the increment F' in terms of the increments of R
and U in the form
RTF =RTRU + U. (4.3)

Next, we introduce the notations
3
Qf =RTR, @'=) ua@gu® (4.4)
i=1

for the incremental rotations associated with R and with the Lagrangian prin-
cipal axes respectively. Then, from (2.18), we calculate

3
U=>3 Au®eu?+0lUu-uat, (4.5)
i=1

and hence the components of U and 2% on the Lagrangian principal axes are
obtained in the form

a = X, Oy =050 -N) i#7, (4.6)
(QRU),; QN (nRU),-,:—Q{;,\,- i# . 4.7
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1.4.2 Incremental stress and equilibrium
The nominal stress difference is

. ow ow
=8 _ = e— N -
S=8-8 5F (F") 5F (F), (4.8)
which has the linear approximation
S = A'F, (4.9)
where
*w
1_
A = 357 (4.10)

is the (fourth-order) tensor of elastic moduli associated with the pair (S, F) of
stress and deformation tensors. In components, (4.10) is given by (2.121). The
component form of (4.9) is

Sai = Aéiﬂjpjﬂy (4.11)

and this serves to define the product appearing in (4.9).
For an incompressible material it follows by taking the increment of the first
equation in (2.85) that the counterpart of (4.9) is

S=AF - pF 4+ pFIFF 1, (4.12)
and this is coupled with the (linearized) incremental form
tr (FF~!) =0 (4.13)

of the incompressibility condition det F = 1, where p is the (linearized) incre-
mental form of p. For an incompressible material the definition (4.10) remains
valid subject to the constraint detF = 1.

From the equilibrium equation (2.31) and its counterpart for x/, we obtain,
by subtraction,

DivS + p,b = 0. (4.14)

This is ezact, but in the linear approximation § is replaced by either (4.9), or
(4.12) with (4.13), as appropriate and with b linearized in X.

Let £ and + be the prescribed data for the incremental deformation %. Then,
the incremental versions of the boundary conditions (2.117) and (2.118) are
written

x=§ ondB?, S$TN=+ ondB. (4.15)

Together, the equations (4.14), with (4.9) for an unconstrained material,
or (4.12) with (4.13) for an incompressible material, (4.2) and the boundary
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conditions (4.15) constitute the basic boundary-value problem of incremental
elasticity given that the underlying deformation x is known. The equations
are also referred to as the equations of small deformations superimposed on
a finite (or large) deformation. The linearized equations constitute the first-
order terms associated with a formal perturbation expansion in the incremental
deformation. The higher-order (nonlinear) terms are required for weakly non-
linear analysis of the stability of finitely deformed configurations and this topic
is addressed in Chapter 10 in this volume; related work is discussed in the pa-
pers by Fu and Rogerson (1994), Fu (1995, 1998), Ogden and Fu (1996) and Fu
and Ogden (1999), for example. For discussion of the mathematical structure
of the incremental equations see, for example, Hayes and Horgan (1974).

In Section 1.5 the incremental equations (4.14) and boundary conditions
(4.15) will be specialized for plane strain deformations and for an incompressible
material in order to discuss an illustrative prototype example of a problem
involving incremental deformations and bifurcation from a finitely deformed
configuration.

1.4.2.1 Flastic moduli for an isotropic material

For the important special case of an isotropic material it is useful to give explicit
expressions for the components of ,A®. These are obtained by referring equation
(4.9) to principal axes and making use of equations (4.3)~(4.7). Thus, for an
isotropic elastic material, the (non-zero) components of A' referred to the
principal axes u® and v(¥ are given by

Aigs = Wi, (4.16)
W, + W,
1 1 — g Fi . .
Aijis = Az = SV # Js (4.17)
W,-w;
Aijeg + Aljji = “,\_—)\] T# G, A # A, (4.18)
i j
Aljig + Aigje = Wa=Wy 044, A=\, (4.19)

where W; = OW/0\;, Wy; = 8*W/0X,0), i,5 € {1,2,3}, and no summation
is implied by the repetition of indices. In (4.16)—(4.19) the convention of using
Greek letters for indices relating to Lagrangian components has been dropped.
For details of the derivation of these components we refer to Ogden (1997).
Equations (4.16)-(4.19) apply for both compressible and incompressible mate-
rials subject, in the latter case, to the constraint (3.3). Expressions analogous to
(4.16)—(4.19) for the components of the tensors of moduli associated with con-
Jugate variables based on the class of strain tensors (2.23)—(2.24) are obtainable
in a similar way, but details are not given here. The appropriate calculations
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are illustrated in, for example, Chadwick and Ogden (1971) and Ogden (1974a,
b, 1997) for first- and second-order moduli, while in Fu and Ogden (1999) the
corresponding calculations for the first-, second- and third-order moduli are
provided relative to the current configuration. For fibre-reinforced materials
an expression for the elastic modulus tensor associated with the Green strain
tensor E defined in (2.16) and its conjugate (second Piola-Kirchhoff) stress
T defined in (2.36) is given by Holzapfel and Gasser (2000), in which the
theory is extended to consideration of viscoelasticity.

In the classical theory of elasticity, corresponding to the situation in which
there is no underlying deformation or stress, the components of A! can be
written compactly in the form

Abjkr = Nijbr + pl(Gidir + Subr), (4.20)

where A and y are the classical Lamé moduli of elasticity and di; is the Kro-
necker delta. Note that X is not used subsequently in this chapter so no con-
fusion with the notation used for the stretches should arise. The values of W5
when A; =1 for i € {1,2,3} are simply Wy; = A+ 2u, Wi; = X, i # j. Also,
we take W; = 0 when \; = 1 for 4,5 € {1,2,3} so that the configuration B, is
stress free (a natural configuration).

The counterpart of (4.20) for an incompressible material is

Azlnz = 'Ailjij = H, A}ijj = Ailjji =0 i#j, (4.21)

and W; = W; = u, W;; = 0, where p is the shear modulus in B,. These
expressions are not unique because they depend on the point at which A\; )3
is set to unity in the differentiation. The differences between (4.21) and any
alternative expressions are accounted for by the incremental Lagrange multi-
plier p in (4.12). In terms of the strain-energy function W defined in (3.4) the
restrictions required in B, may be written

W(L,1) =0, Wa(1,1)=0, Wis(L,1)=2p, Wae(1,1) =4y, (4.22)

where the index « is 1 or 2.

1.4.2.2 Strong ellipticity for an isotropic material

We now give an explicit form for the strong ellipticity inequality in two dimen-
sions for both compressible and incompressible materials. For this purpose we
refer A" to principal axes and make use of the expressions (4.16)—(4.19) and
the formulas (4.3)~(4.7). By restricting attention to the (1,2) principal plane it
can be seen that necessary and sufficient conditions for the resulting quadratic
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form in the incremental quantities to be strictly positive are jointly

MW = AW
W11 > 0, W22 > 0, M > 0, (423)
AL~ A2
W) + W,
WiWa)/2 - Wiy + 2772 5 g, 4.24
(W11 Wag) 12+ g (4.24)
W — W-
(W1 Wa2)' /2 + Wiy + /\1—/\2 > 0. (4.25)
1 — A2

See, for example, Knowles and Sternberg (1977), Hill (1979), Dowaikh and
Ogden (1991), Davies (1991) and Wang and Aron (1996).

For an incompressible material we then use (2.125) in two dimensions to
write my = ng,my = —n,, so that (2.127) reduces to

Afi21201 + (Ad111; + Ajz22s — 2A81122 — 2A55110)n%03 + Agg121m3 > 0,
(4.26)

and on use of (4.16)—(4.18) and the specialization of (2.128) to principal axes
with J = 1, we obtain

A = MW, Abss = MW, Abzeg = NaWaa,  (4.27)

Wy — AW, Al A )\1W2)\ A
)\% — )\% ’ 02112 )\g — )\% 1A2-
(4.28)

Necessary and sufficient conditions for (4.26) to hold are then easily seen to
be

Ajr212 > 0, Agin + Abagaz — 2451122 — 2A55112 > ‘2\/ Ag1212A81215
(4.29)

-2 41 — y—2 41 _
)‘1 'A01212 - )‘2 A02121 -

and we note that these are independent of p.
In terms of the strain-energy function the inequalities (4.29) may be written
A1W1 - /\2W2 9 2 Wl + W2
———= >0, AW —2M Wi + AMiWag + 20 0 ——-2 > 0.
X = A 1 1A2Wia + AgWaa 12)\1_|_>\2
(4.30)

1.4.8 Incremental 'um'quenesé and stability

We next examine the question of uniqueness of solution of the incremental
problem and the associated question of stability of the deformation x- We
focus first on the theoretical development for unconstrained materials, and for
simplicity we restrict attention to the dead-load boundary-value problem with
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no body forces. We also take the boundary conditions to be homogeneous, so
that £ = 0,7 = 0 in (4.15). The appropriate specialization of (4.14) and (4.15)
is then

DivS§=0 inB,, =0 ondB, $TN=0 ondB. (4.31)

One solution of this is X = 0. We therefore wish to determine whether this is the
only solution. With this aim in mind we consider next the change in the energy
functional E{x}, defined by (2.133), due to the change in the deformation from
X to X', the body-force term being omitted. On use of the boundary condition
(4.31)2 and the divergence theorem this is seen to be

E{xX'} - E{x} = / {(WE') - W(F) -tr (SF)} dv. (4.32)
Br
By application of the Taylor expansion to W (F’) this then becomes
E{x'} - E{x} = % / o ($F)av = 2 / e {(AFF} AV,  (4.33)
B, B,

correct to the second order in F.
If the inequality

/ tr (SE) AV = / tr {(AF)F} AV > 0 (4.34)
B, B,

holds for all X # 0 in B, satisfying x = 0 on B2 then, to the second order in F,
(4.33) implies that E{x'} > E{x} for all admissible % % 0 satisfying (4.31),.
This inequality states that x is locally stable with respect to perturbations X
from x, and that x is a local minimizer of the energy functional. Furthermore,
if (4.34) holds in the configuration B then the only solution of the homogeneous
incremental problem is the trivial solution % = 0, i.e. non-trivial solutions are
excluded.

This can be seen by noting that if % # 0 is a non-trivial solution then, by
the divergence theorem and use of equations (4.31), it follows that

/ tr (SE)dV = 0 (4.35)
necessarily holds. The inequality (4.34) is referred to as the exclusion condition
(for the dead-load traction boundary condition). The trivial solution is then the
unique solution. Thus, on a path of deformation corresponding to mixed dead-
load and placement boundary conditions bifurcation of solutions is excluded
provided (4.34) holds. This exclusion condition requires modification if T is
allowed to depend on the deformation. Generally, the exclusion condition will
involve both a surface integral and a volume integral. For a discussion of
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connections between incremental (infinitesimal) stability and uniqueness we
refer to Hill (1957), Truesdell and Noll (1965) and Beatty (1987).

For the all-round dead-load problem, 957 = 0, 8B, = OB[. If the underlying
deformation is homogeneous then F is independent of X and so, therefore, is
A'. It then follows that (4.34) is equivalent to the local condition

tr (SF) = tr {(A'F)F} >0 (4.36)

for all F # 0, i.e. A is positive definite at each point X € B,. It is well known
that the inequality (4.36) cannot bold in all configurations, and hence .A! is
singular in certain configurations when regarded as a linear mapping on the
(nine-dimensional) space of increments F. In other words, in the incremental
stress-deformation relation § = A'F the incremental stress $ can vanish for
non-zero F and bifurcation of the deformation path can occur. The reader
is referred to, for example, Ogden (1991, 1997, 2000) for detailed analysis of
the singularities of .A' and their implications for bifurcation in the dead-load
problem.

1.4.8.1 Specialization to isotropy
In the case of an isotropic material the local stability inequality (4.36) can be
given an explicit form in terms of the derivatives of the strain-energy function
with respect to the stretches. Use of the expressions (4.3)~(4.7) and (4.16)-
(4.18) in (4.36) referred to principal axes leads to

3
tr {(AB)E} = 3 Wikid; + W = W) — A)(Q5 + %nfj 2
ij=1 i#j
1
+3 2 Wi+ W) (A + X)) (@) (4.37)
i#£j

Since A;, QiLj, Qf} are independent, necessary and sufficient conditions for
(4.36) are therefore

matrix (W;;) is positive definite, (4.38)
W;+W; >0 i # 7, (4.39)
W, —W; L,
'mj— >0 1 #£ 7 (440)

jointly for %,j € {1,2,3}. Note that when \; = \;, i # j (4.40) reduces to
Wii — Wi; > 0 and that (4.38) and (4.40) hold in the natural configuration
provided the usual inequalities 4 > 0, 3\ + 2 > 0 satisfied by the Lamé
moduli hold.
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On use of (4.12) and (4.13) we may deduce that the analogue of the stability
inequality (4.36) for an incompressible material is

tr {(A'F)F} + ptr (F1FF-1F) > 0, (4.41)

subject to (4.13). Note that this does not depend on p.

In terms of the modified strain-energy function W (A1, A2) defined by (3.4),
with p eliminated in favour of o3, the inequality (4.41) becomes explicitly
Xl }\2
A1z

. A2 . A2y 2 .
()\%Wu - 20’3)('5\-1-) + ()\%sz - 20’3)(/\—2) + 2()\1)\2W12 - 0'3)

1or 1 R
+ Z(ti —t5) (N — )‘j)(QiLj + Eﬂij)2 + 1 Z(ti +15:) (A + X5)(Q5)* > 0,
i#j i#j
(4.42)

where the subscripts on W denote partial derivatives with respect to A; and
A2 and implicitly the connections (3.5) have been used.
The counterparts of (4.38)—(4.40) in this case are then

)\%Wll — 203 )\1)\2W12 — 03

matrix - <
)\1)\2W12 — 03 )\%Wgz - 20’3

is positive definite, (4.43)

ti+t; > 0 i#74, (4.44)
;-1 L,
—_ 0 . .
= > i (4.45)

Note that p occurs in (4.43)—(4.45) implicitly through o3 and ¢;, i € {1,2,3}.

In general the stability inequality (4.36) is stronger than the strong ellipticity
inequality (2.124). This can be seen by making the specialization F = m @ N
in (4.36), which then (in component form) reduces to (2.124) . This is also the
case for incompressible materials, for which use of (2.125) and (2.126) enables
the term in p to be removed from (4.41).

1.4.4 Global non-uniqueness

The singularities of .A' mentioned above are local manifestations of the global
non-uniqueness in the relationship between S and F expressed through the
constitutive equation

oW
S =2 (4.46)
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for an unconstrained material, or (2.85); in the case of an incompressible ma-
terial. For an isotropic material we recall from (2.101) the polar decomposition

S = TRT. (4.47)

As mentioned in Section 1.2.4.2 this decomposition is not unique since T is
not sign definite. We summarize briefly the extent of non-uniqueness and refer
the reader to Ogden (1977, 1997, 2000) for detailed discussion. For a given S
there are four distinct polar decompositions of the form (4.47) if 2 # t,i,j€
{1,2,3}, and infinitely many when t? = t2, i # j, where t; are the principal Biot
stresses. However, at most one of these satisfies the stability inequalities (4.39)
or (4.44). For each such polar decomposition each R and T pair is determined
uniquely if t? # t2, 4,5 € {1,2,3} and to within an arbitrary rotation about the
u(®) principal axis if t? = t3, i # j, where (i,j,k) is a permutation of (1,2, 3).
Then, for each T, U can in principle be found by inverting (2.88), or (2.89) for
an incompressible material. Since, from (2.94), we have

3
T= Ztiu(i) Qu?, (4.48)
i=1
and T is coaxial with U, this inversion is equivalent to inverting the scalar
equations (2.95) or (2.96) for X;, i € {1,2,3}, when t;, i € {1,2, 3}, are given.
The resulting deformation gradients are then calculated from F = RU since
u® 4 e {1,2,3}, are determined from T. In general, however, these inversions
are not unique and the extent of their non-uniqueness is a separate question
from that of non-uniqueness of the polar decomposition (4.47).

For an incompressible material, for example, elimination of p from (2.96)
yields the equations

Aty — )\lg_)‘Wl = Aty — Angwz = gtz — /\3'::;)\13,
from which Aj, Ay, A3 can, in principle, be determined when t1,t2,t3 are pre-
scribed. Examples illustrating non-uniqueness of the inversion of (4.49) are
given in Ogden (1991, 1997, 2000).

The associated physical problem is that of a (dead-load) pure strain F = U
(R =I) in which the principal directions u®) are fixed as the load increases.
The prototype of this problem is the Rivlin cube problem (Rivlin, 1974), for
which ¢; =t = t3 and a cube of elastic material is subjected to equal normal
forces per unit reference area on its three pairs of faces. Several variants of
this problem and related problems are analyzed in Sawyers (1976), Ball and
Schaeffer (1983), Ogden (1984c, 1985, 1987, 1997), MacSithigh (1986), Kearsley
(1986) Chen (1987, 1988, 1995, 1996) and MacSithigh and Chen (1992a, b)

AMAgdz =1,  (4.49)
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amongst others. For a general discussion of bifurcation we refer to Chapter 9
in this volume.

1.5 Incremental boundary-value problems

Recalling the notation x = }(X) defined in (4.1) for the increment in x we now
change the independent variable from X to x and introduce the incremental
displacement vector u defined, through (2.2), as a function of x by

u(x) = x(x"'(x))- (5.1)
The displacement gradient grad u, which we denote by I' is then given by
r=FF1 (5.2)

so that it is the push forward (from B, to B) of the increment in F. From (4.13)
it follows that the incremental incompressibility condition may be written

tr (FF~!) = tr (T') = divu = 0. (5.3)

The corresponding update (or push forward) from B, to B of the incremental

nominal stress, denoted X, is defined by STNdA = ETnda, where NdA and
nda are surface elements in B, and B, respectively. With the aid of (4.12) and
Nanson’s formula (2.8), we obtain

2 =J'FS = Al +pT - 51, (5.4)

where A} is the fourth-order (Eulerian) tensor whose components are given in
terms of those of LA' by (2.128). With this updating the incremental equilib-
rium equation (4.14) becomes

divs =0, (5.5)

when body forces are omitted, where use has been made of (2.11),.
In component form equations (5.4) and (5.3) are combined to give

Eji = A(I)jilk:uk,l +puji— plsij, Ui = 0. (56)

The incremental traction ¥7 n per unit area on a surface in B with unit normal
n has components

Tjin; = (Abjax + P 8jkbin)uknj — pns. (5.7)
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1.5.1 Plane incremental deformations

We now restrict attention to plane incremental deformations so that uz = 0 and
u; and uz depend only on z; and z2. Furthermore, we take the Cartesian axes
to coincide with the Eulerian principal axes of the finite deformation associated
with F. With this restriction we deduce form (5.6); the existence of a scalar
function, ¢ say, of £; and x5 such that

ur =va, Uz =—-Y,. (5.8)

Substitution of (5.8) into the equilibrium equation (5.5) with (5.6); appropri-
ately specialized then leads, after elimination of the terms in p, to an equation
for 9. If the finite deformation is homogeneous and the material is isotropic, so
that the components A, are constants and given by (4.27) and (4.28) then
this equation has the compact form

o 1111 + 289 1122 + Y 2202 = 0, (5.9)

where the coefficients are defined by

o= A(1)12121 2:3 = A(l)llll + A32222 - 2"4(.:%1122 - 2"4(1)1221’ Y= AéZlZl‘
(5.10)

For details of the derivation we refer to Dowaikh and Ogden (1990).

This is the incremental equilibrium equation for plane incremental deforma-
tions of an incompressible isotropic elastic solid in the (1,2) principal plane for
an arbitrary homogeneous deformation. For a specific incremental boundary-
value problem appropriate boundary conditions need to be given. In order to
illustrate these we now concentrate attention on the problem of incremental
deformations of a homogeneously pure strained half-space.

1.5.1.1 Surface deformations of a half-space subject to pure homogeneous
strain

‘We now consider the pure homogeneous strain
T = A1X1, To = A2X2, rg = )\3X3 (5.11)

as in (3.1) and we take the deformed half-space B to be defined by z, < 0
with boundary z; = 0. On this boundary we set the boundary conditions
to correspond to vanishing incremental traction. Specialization of (5.7) with
ny = 0,n; = 1,n3 = 0 then yields two equations. When expressed in terms of
1 after elimination of p by differentiation along the boundary and use of the
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equilibrium equation we obtain

V(W22 — Y11} + 02011 =0 onzy =0, (5.12)
(2847 —02)Y 112+ 7222 =0 onzy =0, (5.13)

where o3 is the normal stress on the boundary (and uniform through z, < 0)
associated with the underlying homogeneous deformation. Again we refer to
Dowaikh and Ogden (1990) for details. Note that the coefficients (material
constants) a, 3,7 appearing in (5.9) also feature in the boundary conditions
(5.12) and (5.13) but additionally o arises in the boundary conditions as a
separate independent parameter.

In the notation (5.10) the strong ellipticity conditions (4.29) then take on
the simple forms

a>0, B>—a, (5.14)

and these inequalities arise naturally in consideration of stability of the homo-
geneous deformation of the half-space, as we see below.

An incremental surface deformation must decay as o — —oo. We consider
1) to have the form

P = Aexp(skzy — ikz;), (5.15)

where A, s and k are constants. This is periodic in the z; direction. In general
s is complex and is determined by substitution of (5.15) into (5.9), which yields
the quadratic equation

ys* =285 +a =0 (5.16)

2

for s*. This equation has two solutions for s with positive real part, and we

denote these by s1,s2. The general solution for ¢ with the required decay
properties is then

P = (Ae"1F72 | Besehea)g-ikar (5.17)

where A and B are constants.
After substitution of (5.17) into the boundary conditions (5.12) and (5.13)
we deduce that there is a non-trivial solution for A and B (i.e. an incremental

deformation is possible) if and only if the material constants a, 3, and the
normal stress o2 satisfy the equation

oy +2/a7(B+7 - 03) — (= 02)* = 0. (5.18)

Subject to the incompressibility condition (3.3) this identifies values of g5 and
the stretches A1, A, Az for which bifurcation from the homogeneous deformation
into an inhomogeneous mode of incremental deformation can occur.
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If o = 0 in (5.18) it reduces to

Yo —v+2y/aff(B+7)] =0. (5.19)

Since, by (5.10) and (4.21), @ = v = 8 = p in the undeformed configuration
both factors in (5.19) are positive there. Thus, incremental surfaces deforma-
tions are excluded in this configuration, and, by continuity, on any path of pure
homogeneous strain from this configuration such that the inequalities

¥y>0, a—v+2/af(B+v) >0 (5.20)

hold. It is easy to show that the strong ellipticity inequalities (5.14) follow from
(5.20). Note that (5.20) are weaker than the exclusion condition appropriate
for all-round dead loading obtained by specializing (4.43)-(4.45) to the present
two-dimensional situation since the boundary conditions considered here are
different.

For g2 # 0 the exclusion condition is then seen to be

ay+2y/ay(B +v —02) — (y—02)? >0, (5.21)
which restricts o, to a range of values dependent on the other parameters,
which are subject to (5.20).

To illustrate the results graphically we restrict attention to plane strain with

A3 = 1 and set A\; = A, A3 = A~} and define the strain energy in terms of A
through

W) =W, A1), (5.22)
Then, (5.21) reduces to
MW (A) + AW(XN) — 202 = 1)ag — (A = D)o2/AW/(A) > 0, (5.23)

which puts restrictions on the allowable values of A and 5. The curves in
Figure 1 show the boundaries of the region defined by (5.23) in respect of
the neo-Hookean strain-energy function (2.103) and a single-term strain-energy

function in the class (2.106) given, in the present plane strain specialization,
by

W) =8u(\V/2 + A"1/2 _ ), (5.24)

In (a) the stable region is to the right of the left-hand curve and below the upper
curve. In (b) the stable region is the area within the loop formed by the curve.
In each case the natural configuration A = 1,5 = 0 is within the stable region.
If &2 = 0 then the half-space is stable for A > 1 but can become unstable in
compression at a critical value of A < 1 for the neo-Hookean material, while for
the strain energy (5.24) stability may be lost in either compression or tension.
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Fig. 1. Plot of the stable region in (A, 32)-space for (a) the neo-Hookean strain energy
and (b) the strain energy (5.24).

The problem discussed here and some specializations have been examined by
a number of authors, and we refer, in particular, to Nowinski (1969a, b), Us-
mani and Beatty (1974), Reddy (1982, 1983) and Dowaikh and Ogden (1990).
For a compressible material the corresponding analysis is given by Dowaikh
and Ogden (1991). See also Biot (1965). The analysis of stability of a thick
plate subject to a pure homogeneous finite strain has been discussed by several
authors and we mention, in particular, Sawyers and Rivlin (1974, 1982) and
Sawyers (1977). Stability results are obtained in the static specialization of
the problem of vibration of a finitely deformed plate by Ogden and Roxburgh
(1993) and Roxburgh and Ogden (1994) for incompressible and unconstrained
materials respectively, while the influence of a finite simple shear on stability
has been examined on the same basis by Ogden and Connor (1995) and Connor
and Ogden (1996).

References to the analysis of stability for problems involving the inflation of
a thick-walled sphere or the extension and inflation of a thick-walled circular
cylindrical tube can be found in Ogden (1997), for example. Recently, the
stability of a rectangular block deformed into a sector of a circular cylindrical
tube has been analyzed by Haughton (1999) and Dryburgh and Ogden (1999)
from different points of view.

A comprehensive list of references to contributions on linear stability analysis
is contained in an appendix at the end of Chapter 10 in this volume.
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1.6 Elastodynamics

1.6.1 Kinematics

We now extend the analysis of the previous sections by allowing the deformation
to depend on time. As before we take B, to denote a fixed (time independent)
reference configuration of the body (which may, but need not, be a configuration
occupied by the body at some specific time). Let ¢t € I C R denote time, where
I is an interval in R. With each t € I we associate a unique configuration B,
of the body. The (one-parameter) family of configurations {B; : t € I} is then
called a motion of the body. We assume that as the body moves continuously
then B; changes continuously. As in Section 1.2, a point of B, is labelled by its
position vector X. Let x be its position vector in the configuration B; at time
t, which is referred to as the current configuration.
Since B; depends on t we write

x=x(X), X=x7'(x) (6.1)
instead of (2.1) and (2.2), or

x=x(X,t) forall XeB,, tel (6.2)

in order to make the dependence on t explicit. It is usual to assume that
x (X, t) is suitably regular, and for many purposes it may be taken to be twice
continuously differentiable with respect to position and time.

The velocity, denoted v, and acceleration, denoted a, of a material point X
are defined by

] 82
vEx,= Ex(x, 1), asSvVvi=ExXu= Wx(x,t), (6.3)

respectively. We emphasize that 8/0t is the material time derivative, i.e. the
time derivative at fixed X, and it is denoted by ; when the independent vari-
ables are understood to be X and ¢.

Any scalar, vector or tensor field may be expressed in either the Eulerian
description (as a function of x and t) or, equivalently, in the Lagrangian de-
scription (as a function of X and ¢t) through the motion (6.2) or its inverse.

Thus, if the velocity v is regarded as a function of x and ¢, the velocity
gradient tensor, denoted L, is an BEulerian tensor defined as

(9’Ui

L= gradv, Lij = %
7

(6.4)
It follows that

Gradx; = F; = (grad v)F = LF, (6.5)
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where the deformation gradient F is defined as in (2.3} but now depends on ¢.
Equation (6.5) is analogous to the formula (5.2) in the context of incremental
deformations.

Using the standard result

(det F); = (det F)tr (F'F ), (6.6)
we deduce, using (6.5), that
Ji = (detF) ; = (det F)tr (L) = Jdivv, (6.7)

where J = detF, as in (2.5). Thus, divv is a measure of the rate at which
volume changes during the motion. For an isochoric motion J = 1 and (6.7)
reduces to

divv =0. (6.8)

Equation (6.8) is the analogue of the incompressibility condition (5.3) arising
in the linearized incremental theory, but we note while (5.3) is a linear approx-
imation equation (6.8) is exact in the dynamic context.

A rate counterpart of the mass conservation equation (2.25), which also ap-
plies when p and J depend on t, is obtained by differentiating (2.25) with
respect to ¢t and making use of (6.7) to give

pt+ pdive =0. (6.9)

1.6.2 FEquations of motion
The equation of motion in the form analogous to the equilibrium equation
(2.31) is

DivS + p,b = pra = prx 4, (6.10)

where S is given by (2.83); for an unconstrained material and (2.85); for an
incompressible material, with F and p now depending on t. Equation (6.10) is
an equation for the motion (6.2) subject to appropriate boundary and initial
conditions, which are not listed here. In components equation (6.10) has the
forms

AcipiTiap + Prbi = prEin (6.11)
and
Aclijf‘j,aﬂ =P+ prbi = prTigy, det(z; o) =1 (6.12)

for unconstrained and incompressible materials respectively.
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There are very few exact finite amplitude solutions of the dynamic equations
(6.11) or (6.12) available in the literature. Some of these are outlined in the
text by Eringen and Suhubi (1974) and we refer to this work for references up
to the date of its publication. We mention the analysis of radial oscillations of a
cylindrical tube by Knowles (1960, 1962), radial oscillations of a spherical shell
by Guo and Solecki (1963a, b) and of a spherical cavity in an infinite medium
by Knowles and Jakub (1965). More recent work includes the derivation of
exact solutions by Rajagopal et al. (1989), Boulanger and Hayes (1989), Hayes
and Rajagopal (1992) and Andreadou et al. (1993). For discussion of the
propagation of finite amplitude waves we refer to, for example, Carroll (1978),
Boulanger and Hayes (1992) and Boulanger et al. (1994). Further references are
contained in these papers. Some aspects of nonlinear elastic wave propagation
are discussed in Chapter 11 in this volume.

1.6.3 Incremental motions

We now consider incremental motions superimposed on a finite motion. Let
x = x(X,t) (6.13)

be the dynamic counterpart of the increment defined in (4.1). Then, the dy-
namic counterpart of the incremental equilibrium equation (4.14) is

DivS + p,b = pX 4, (6.14)

where a superposed dot again signifies an incremental quantity. In (6.14) no
approximation has been made. However, when the equation is linearized in the
incremental quantities it becomes, for an unconstrained material,

Div (A'F) + p,b = p,X 4, (6.15)

where b has been linearized in x.
In components equation (6.15) may be written
Acigi®iab + Abigjyki 8Tk ary + Prbi = prii e, (6.16)

where A2, . are the components of the (sixth-order) tensor .42 of second-
order moduli defined by

W
- OF3’

. W

2 — ———

For the special case in which the incremental motion is superimposed on a
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homogeneous static finite deformation and body forces are omitted, equation
(6.16) reduces to

A;w;‘ij,aﬁ = pri; e, (6.18)

where the coefficients Aéiﬂj are now constants. This equation may be updated
to the static finitely-deformed configuration to give

AbpiajUipg = Plitt, (6.19)

where

u(x,t) = u(x(X,t),t) = x(X, ). (6.20)

The counterpart of (6.19) for an incompressible material is
Abpiqitipa = Pji = Pligt, Uiz = 0. (6.21)

Many specific problems have been examined on the basis of the incremental
equations and we mention here just a selection of these. The problem of sur-
face (Rayleigh) waves propagating on a homogeneously pre-strained half-space,
the dynamic counterpart of the problem discussed in Section 1.5.1.1, was ex-
amined by Hayes and Rivlin (1961a), Flavin (1963) and Chadwick and Jarvis
(1979). It was reconsidered from the point of view of its connection with sta-
bility of the underlying finite deformation by Dowaikh and Ogden (1990, 1991)
for incompressible and unconstrained materials respectively. The surface wave
problem for an underlying deformation corresponding to simple shear was ex-
amined by Connor and Ogden (1995). Wave propagation in a pre-strained plate
was discussed by Ogden and Roxburgh (1993), Roxburgh and Ogden (1994)
and Connor and Ogden (1996), again with reference to the underlying stability
problem. References to related work can be found in these papers. References
to papers dealing with wave propagation in pre-stressed cylinders are given by
Eringen and Suhubi (1974) and Haughton (1982), but there is very little in the
literature for problems with other underlying geometries.

1.6.3.1 Incremental plane waves

In this final section we consider the propagation of plane waves given in the
form

u=mf(n- x— ct), (6.22)

where the unit vector m is the polarization vector, c is the wave speed and f
is a twice continuously differentiable function. The unit vector n, when real,
defines the direction of propagation of the wave, which is then a homogeneous
plane wave; in general n may be complex, in which case the wave is referred
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to as an inhomogeneous plane wave. In many applications f is taken to be an
exponential function, but this is not necessary in general.

Substitution of (6.22) into the equation of motion (6.19) and (6.21) yields,
after some manipulations,

Qo(n)m = pc’m, (6.23)

and
[Qo(n) - n ® Qo(n)njm = pc?m, m-n=0, (6.24)

respectively, where the tensor Qo(n), which depends on n, is defined (in com-
ponent form) by

[Qo(n)ij = Abpiginong- (6.25)

In view of its connection with wave propagation Qg(n) is called the acoustic
tensor.

Equations (6.23) and (6.24), for unconstrained and incompressible materials

respectively, are referred to as propagation conditions. They determine possi-

ble wave speeds and polarization vectors for which plane waves with a given

direction n can propagate. The wave speeds are obtained as solutions of the
characteristic equation

det[Qo(n) — pc®1] =0 (6.26)
(for an unconstrained material), or
det[Qo(n) — n ® Qo(n)n — pc’I] = 0 (6.27)

(for an incompressible material), I being the identity tensor.
From either (6.23) or (6.24) we obtain

pe? = [Qo(m)m] - m. (6.28)

By expressing the right-hand side of (6.28) in component form it is then appar-
ent from (2.127) that pc? > 0 follows from the strong ellipticity condition, and
this provides an interpretation of the latter condition in terms of wave prop-
agation. For further discussion of this connection and references see Ogden
(1997).

The propagation of infinitesimal plane waves in a homogeneously deformed
elastic material was first considered by Hayes and Rivlin (1961b). Recently,
an extensive analysis of the reflection of plane waves at the boundary of a pre-
stressed half-space subject to pure homogeneous strain has been carried out
by Ogden and Sotiropoulos (1997, 1998) for incompressible and unconstrained
materials respectively, and a corresponding analysis for a half-space subject
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to a simple shear deformation by Hussain and Ogden (1999). References to
related works are contained in these papers.
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