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Abstract: Articular cartilage is the bearing material that lines the ends of the bones of synovial
joints. Its primary function is to reduce friction and wear at the articulations of the musculos-
keletal system. The tribological properties of cartilage are intimately related to its structure
and mechanical properties. The modes of lubrication in cartilage extend beyond the traditional
mechanisms of fluid-film or boundary lubrication. The purpose of this review is to describe the
salient properties of articular cartilage necessary to understand the unique biotribology of dia-
rthrodial joints.
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1 CARTILAGE STRUCTURE AND FUNCTION

Cartilage is a white connective tissue which is syn-
thesized and maintained by cells called chondro-
cytes (Fig. 1). In human joints, the thickness of the
articular cartilage layer varies from 0.5 to 1.5 mm in
upper extremity joints, such as the hand and the
shoulder [1, 2], and from 1 to 6 mm in lower extre-
mity joints, such as the hip, knee, and ankle [3–5].
Under normal conditions, articular cartilage pro-
vides low friction and wear over a life span. It is a
highly hydrated tissue, with a porosity varying from
68 to 85 per cent in adult joints [6, 7]. The interstitial
fluid of cartilage is water, containing electrolytes
such as sodium and chloride.

Cartilage cells only occupy about 5 per cent of the
tissue volume. The surrounding tissue matrix (the
extracellular matrix of cartilage) consists primarily
of a protein called collagen type II (10–20 per cent
of the wet weight) and proteoglycans (5–10 per
cent of the wet weight) [6, 7]. The collagen has a
fibrillar structure which is well suited to sustain ten-
sile stresses. These fibrils, whose diameter varies
from 10 to 300 nm, exhibit a different orientation
through the depth of the tissue from the articular

surface to the subchondral bone (the bone right
below the cartilage, onto which it is anchored). In
the superficial tangential zone, which consists of
10–20 per cent of the topmost region of the articular
layer, the fibrils are oriented parallel to the articular
surface. In the middle zone, which consists of the
next 40–60 per cent of the thickness, their orien-
tation is more random, whereas, in the deep zone
their orientation is perpendicular to the bony sur-
face. This heterogeneity in the ultrastructural organ-
ization of the collagen matrix is reflected in the
heterogeneity of tensile properties through the
depth, as discussed subsequently. When the cartilage
surface is pricked with a needle, the tissue splits
along a direction known as the split-line direction,
which represents the predominant collagen fibril
orientation.

Proteoglycans are macromolecules consisting of
proteins and sugars, which aggregate together by
linking non-covalently to a hyaluronan backbone,
forming very large macromolecules called aggrecans.
Proteoglycans consist primarily of negatively
charged glycosaminoglycan (GAG) chains (sugars)
covalently linked to a protein core. Proteoglycans
are typically enmeshed and immobilized within the
collagen matrix. Consequently, the negative charges
on their GAG chains are referred to as the tissue’s
fixed-charge density (FCD). As these negative
charges cannot freely flow out of the tissue, the inter-
stitial fluidmust contain an excess of cations, relative
to the external bathing solution, in order to maintain
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electroneutrality within the tissue. The net effect is
that the osmolarity of ions inside the tissue is greater
than outside, producing an osmotic pressure within
the interstitial fluid [8–10]. This Donnan osmotic
pressure increases with increasing FCD, and the
FCD increases with compressive strain, as the
charges get closer together. The rate of change of
osmotic pressure with compressive strain may be
construed as an osmoticmodulus; hence, the proteo-
glycans of cartilage contribute to the tissue’s com-
pressive properties [9, 11].

While the cartilage porosity is quite elevated, the
tightly entangled collagen fibrils and proteoglycan
molecules contribute to produce a very small effec-
tive pore size for the cartilage matrix, estimated to
be on the order of 1 nm. Therefore, the permeability
of cartilage, which measures the resistance to
interstitial fluid flow in the presence of a pressure
gradient, is very small. Compared with artificial
‘self-lubricating’ or ‘oil-retaining’ porous bearings,
the high porosity, low permeability, and relatively
low modulus of cartilage makes it a unique bearing
material.

2 GOVERNING EQUATIONS FOR CARTILAGE

From basic principles of continuum mechanics, it is
well known that the mechanical properties of a
material can only be identified and measured once
a suitable constitutive model has been formulated.
The formulation of a constitutive model is an itera-
tive theoretical process based on experimental
observations. It has been known from permeation
experiments that water flows through cartilage [12–
15], and that the energy dissipated by this interstitial
fluid flow results in a flow-dependent viscoelasticity
[16]. These classical studies have since been sup-
ported by overwhelming experimental data which

indicate that articular cartilage needs to be modelled
using porousmedia theories to account for the press-
urization and flow of the interstitial fluid within the
solid collagen–proteoglycan matrix during tissue
loading. One of the earliest and most widely used
successful porous media models of articular cartilage
is the biphasic theory of Mow et al. [17], which uses
the framework of mixture theory [18–20] to describe
cartilage as a mixture of an intrinsically incompressi-
ble solid and an intrinsically incompressible fluid.
This mixture approach has also been successfully
extended to incorporate the FCD in the solid matrix
and electrolytes in the interstitial fluid [9, 21, 22].
In the mixture approach, the total stress in the
tissue, s, represents the superposition of the hydro-
static interstitial fluid pressure, p, and extra stress
in the solid matrix, se

s ¼ �pI þ se (1)

where I is the identity tensor. The extra stress is a
function of the tissue strain. In this review, only infini-
tesimal strain theory is discussed, with the infinitesi-
mal strain tensor given by E ¼ (grad uþ gradT u)=2,
where u is the solid matrix displacement. Under
quasi-static conditions, which prevail for most load-
ing configurations of cartilage, and in the absence of
external body forces, the conservation of linear
momentum requires that

div s ¼ 0 (2)

2.1 Solid matrix stresses

Many different forms have been proposed for the
constitutive relation between se and E, depending
on the specific experimental phenomena that
needed to be captured. When testing cartilage in con-
fined compression [17, 23] or indentation [24–26],
the classical linear isotropic elastic relation has
often been found suitable

se ¼ l(trE)I þ 2mE (3)

where l and m are the Lamé constants of the solid
matrix. The confined compression modulus is
called the aggregate modulus [17] and is given by
HA ¼ lþ 2m, whereas m is the shear modulus.

The constitutive relation of equation (3) predicts
that the tissue properties are isotropic and identical
in tension and compression. However, experiments
have shown that articular cartilage exhibits markedly
higher moduli in tension versus compression
[27–30], which has motivated several investigators
to adopt a more general constitutive relation to cap-
ture this behaviour [31–34]. Furthermore, the tensile

Fig. 1 Cross-section of the patellofemoral joint from a

human knee, showing the articular layers and

subchondral bone of the patella (top) and

femoral trochlea
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modulus measured parallel to the split-line direction
has been reported to be approximately twice as high
as that measured perpendicular to the split-line
direction [27, 35], suggesting that cartilage exhibits
orthotropic symmetry [29, 36]. Using the frame-
invariant conewise linear elasticity (CLE) theory of
Curnier et al. [37], the tension–compression non-lin-
earity and orthotropic symmetry can be modelled
with

se ¼
X3
a¼1

"
laa{trAaE}(trAaE)Aa

þ ma(AaEþ EAa)þ
X3
b¼1
b=a

labtr(AaE)Ab

3
5 (4)

The texture tensors appearing in this relation,
Aa ¼ aa � aa, are dyadic products of the unit vectors
aa oriented parallel (a ¼ 1) and perpendicular
(a ¼ 2) to the split-line direction, and normal to the
articular surface (a ¼ 3). The tension–compression
non-linearity is captured by the functional depen-
dence of laa on trAaE, which is the normal strain
component along the vectors aa

laa{trAaE} ¼
l�aa trAaE , 0
lþaa trAaE . 0

�
(5)

l�aa and lþaa represent the moduli when the normal
strain is compressive and tensile, respectively. Note
that lba ¼ lab, so that the total number of material
constants for this tension–compression orthotropic
model is 12 (three more than in the classical case
of linear orthotropic elasticity). Tensile and com-
pressive aggregate moduli can also be defined
H+Aa ¼ l+aa þ 2ma; for example, HþA1 ¼ lþ11 þ 2m1

is the tensile aggregate modulus along the split-line
direction and H�A3 is the compressive aggregate
modulus along the thickness direction.

In problems where it is less important to capture
the orthotropic symmetry than the tension–
compression non-linearity, the symmetry can be
raised to become cubic, by letting lþaa ; lþ1, l�aa ;
l�1 (or equivalently, H+Aa ; H+A), lab ; l2, and
ma ; m (a, b ¼ 1–3) [34]. This cubic symmetry
model has four material constants, HþA, H�A, l2,
and m. These material constants may be related to
the tensile and compressive Young’s moduli, E+Y,
and Poisson’s ratios, n+, through a generalized
form of the classical linear isotropic elasticity
relations

E+Y ¼ H+A �
2l22

H+A þ l2
, n+ ¼

l2

H+A þ l2
(6)

The constitutive models of equations (3) and (4)
assume that the solid matrix behaves elastically, so
that the viscoelastic response of the solid–fluid mix-
ture derives entirely from the energy dissipation due
to interstitial fluid flow, also called flow-dependent
viscoelasticity. These types of constitutive models
can explain the observed time-dependent response
of cartilage loaded in confined and unconfined com-
pression, and indentation. However, these models
predict a time-invariant elastic response to torsional
loading of a cylindrical disc [34] and a nearly time-
invariant elastic response in uniaxial tension [38].
Neither of these predictions is supported by exper-
imental measurements, which show significant
time-varying viscoelastic responses in these loading
configurations [39–43]. Consequently, several inves-
tigators have proposed that the solid matrix is also
intrinsically viscoelastic [38, 39, 44–46], which
implies that energy dissipation occurs in the col-
lagen–proteoglycanmatrix as a result of the breaking
and reforming of (presumably non-covalent) mol-
ecular bonds. This flow-independent viscoelasticity
has been commonly modelled using the quasi-
linear viscoelastic model of Fung [47]

sve(t) ¼ g(t)se{E(0)}þ

ðt
0

g(t � t)
@se

@t
{E(t)}dt (7)

where sve is the viscoelastic stress in the solid matrix
and se the equilibrium elastic response given for
example by equation (3) or (4). In this case, the
total mixture stress is given by s ¼ �pI þ sve,
which supersedes equation (1). g(t) is a suitably
chosen relaxation function, such as

g(t) ¼ 1þ c Ei
t

t2

� �
� Ei

t

t1

� �� �
(8)

where Ei(�) is the exponential integral function and c,
t1, and t2 are material coefficients [47]. The value of
the relaxation function upon instantaneous loading
is of particular significance and is given by
g(0þ) ¼ 1þ c ln (t2=t1), whereas the long-term
response is given by g(1) ¼ 1.

It follows from this presentation that articular car-
tilage exhibits both flow-dependent and flow-inde-
pendent viscoelasticity. Therefore, under dynamic
loading conditions, the dynamic tensile, compres-
sive, and shear moduli are significantly greater than
their corresponding equilibrium moduli appearing
in the constitutive relations given earlier. The
dynamic moduli vary with the loading frequency f;
furthermore, with regard to flow-dependent viscoe-
lasticity, the frequency response is a function of the
dimensions of the tissue sample because flow-
dependent effects are regulated by the path length
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required for interstitial fluid to exude from the tissue.
For example, in unconfined compression of a cylind-
rical tissue sample between impermeable loading
platens, the characteristic loading frequency for
flow-dependent viscoelasticity is given by
fc ¼ HþAk=a

2, where a is the sample radius and k
the hydraulic permeability described in the next sec-
tion. At this characteristic frequency, the energy dis-
sipation resulting from the diffusive drag between
the interstitial fluid and the solid matrix is greatest.
When f � fc, interstitial fluid pressurization is negli-
gible, the fluid flows through the solid matrix with
negligible resistance, and the tissue behaves as a
compressible solid; when f � fc, the interstitial
fluid pressure reaches its maximum value, the fluid
has little time to flow relative to the solid matrix,
and the tissue behaves as an incompressible solid.
The intrinsic viscoelastic behaviour is superposed
upon this flow-dependent response. When 1=t2 �
f � 1=t1, the energy dissipation from intrinsic solid
matrix viscoelasticity is greatest; at the two extremes,
f � 1=t2 and f � 1=t1, the tissue behaves elastically.
On the basis of the constitutive relations for cubic
symmetry, the upper bounds on the dynamic tensile
and compressive Young’s moduli and Poisson’s
ratios, which occur when f � fc and f � 1=t1, are
given by reference [38]

E0þ

+Y ¼ 1þ c ln
t2

t1

� �
H+A �

3

2
l2 þ

H+A

2

� �
;

n0
þ

+ ¼
1

2
(9)

The term in the first parenthesis represents the
dynamic enhancement factor resulting from flow-
independent viscoelasticity, whereas the term in
the second parenthesis represents the dynamicmod-
ulus resulting from flow-dependent effects. The
value of the dynamic Poisson’s ratio confirms that
the tissue behaves as an incompressible solid at suf-
ficiently high frequencies. At the other end of the fre-
quency spectrum, when f � fc and f � 1=t2, the
corresponding moduli are given in equation (6).

Before concluding this section on constitutive
models for solid matrix stresses, it is of interest to
note that these constitutive relations for infinitesimal
strains remain essentially unchanged when model-
ling the FCD of the solid matrix and incorporating
electrolytes in the interstitial fluid [9, 11, 48]. When
the interstitial fluid contains two monovalent coun-
ter-ions, the osmotic modulus P resulting from the
rate of change of Donnan osmotic pressure with dila-
tation is given (under ideal conditions) by

P ¼
Ru(cFr )

2

ww
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(cFr )

2 þ (2c�)2
q (10)

where cFr is the FCD and ww
r is the tissue porosity, in

the reference state of zero strain, R the universal
gas constant, u the absolute temperature, and c�

the salt concentration in the external bath [11].
Within the CLE framework of equation (4), the
osmotic modulus is superposed upon the material
coefficients l+aa (or H+Aa) and lab; this means that
the explicit incorporation of the osmotic modulus
into equation (4) is simply achieved by substituting
leff+aa ¼ l+aa þP for l+aa (or H eff

+Aa ¼ H+Aa þP for
H+Aa) and leffab ¼ lab þP for lab. These ‘effective’
properties represent the combination of the osmotic
modulus with the structural moduli of the collagen–
proteoglycan matrix, which are independent of the
osmotic modulus. This formulation provides an
explicit dependence of the material properties of
the solid matrix on the FCD and external bath con-
centration. The relation of equation (10) shows that
P increases with increasing cFr and decreases with
increasing c�.

2.2 Solid matrix permeability

In addition to the conservation of linear momentum
for the mixture (equation (2)), it is necessary to
satisfy the conservation of linear momentum for
the interstitial fluid. In the absence of fixed charges,
and under the assumption that the frictional drag
between the interstitial fluid and the solid matrix is
linearly proportional to their relative velocity, the
momentum equation for the interstitial fluid reduces
to Darcy’s law

w ¼ �k grad p (11)

where w is the volumetric flux of water relative to the
solid matrix, and k the hydraulic permeability. This
formulation assumes that the permeability is isotro-
pic; a more general formulation may be given by
w ¼ �k grad p, where k is the permeability tensor
whose spectral representation is k ¼

P3
a¼1 kaAa.

Thus, k1, k2, and k3 represent the permeability paral-
lel and perpendicular to the split-line direction, and
normal to the articular surface, respectively. To com-
plete the set of governing equations for a solid–fluid
mixture, the conservation of mass for the mixture
needs to be satisfied

div(vs þ w) ¼ 0 (12)

where vs is the velocity of the solid matrix, related to
the displacement through the material derivative
with respect to the solid, vs ¼ Dsu=Dt.

In the presence of fixed charges, the flux of water
and ions is more complex and the full treatment is
beyond the scope of this presentation. However,
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under zero current (one-dimensional open circuit
conditions), the effective permeability is given by

keff ¼ k 1þ
2kRu(cFr )

2

ww
r

"
(Dþ �D�)cFr þ (Dþ þD�)

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(cFr )

2þ (2c�)2
q #

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

�1

(13)

where k represents the intrinsic hydraulic per-
meability of the matrix independent of the effect of
fixed charges [49]; Dþ and D� are the diffusivities of
the monovalent counter-ions (sodium and chloride)
in the interstitial fluid. In this case, w ¼ �keff grad p
supersedes equation (11). This result shows that the
effective permeability of the tissue decreases with
increasing FCD.

3 CARTILAGE MATERIAL PROPERTIES

Experimental measurements of the mechanical
properties of cartilage are performed either in situ,
whereby the articular layer is left intact on its sub-
chondral bone, or on explants isolated from the
articular layer. All measurements need to be per-
formed in a saline solution, typically supplemented
with protease inhibitors to retard tissue degradation
over long testing durations; the solution may be buf-
fered to maintain a physiological pH; the NaCl con-
centration is typically physiological, 0.15 M, but it
may be varied to investigate the corresponding vari-
ations in the material properties.

In situ measurements typically consist of indent-
ing the articular cartilage with a flat-ended or hemi-
spherical probe which is either impermeable, or
porous and free draining (Fig. 2) [26, 50–52]. In
situ measurements offer the advantage of keeping
the tissue intact, though the contact indentation
analysis required to recover the intrinsic material
properties is more complex [24, 25, 53, 54]. Most
indentation analyses have been performed using
the constitutive relation of equation (3) for the solid
matrix stresses, and equation (11) for the per-
meability; the material properties recovered from
these analyses are HA, n (or m), and k, where HA is
typically representative of the compressive aggregate
modulus along the direction normal to the articular
surface, H�A3. Indentation results have been
reported for human cartilage and for many animal

species [26, 55–60]. Typical values for normal
human cartilage are HA � 0.5–0.7 MPa, n � 0.0–0.1,
and k � (1.1–2.2) � 10215 m4/N s [26].

Experimental measurements on tissue explants
typically consist of permeation tests [12–15], con-
fined compression [17, 28, 61, 62], unconfined com-
pression [15, 63–67], simple shear [39], and
torsional shear [34, 41, 68]. The advantages of testing
explants include the ability to extract material prop-
erties from a simpler analysis, the ability to measure
inhomogeneous properties through the thickness of
the articular layer, and the ability to measure proper-
ties along the principal texture directions of the
tissue.

Permeation tests consist of applying a pressure
gradient across a cylindrical cartilage sample and
measuring the resulting fluid flux, or driving the
fluid at a prescribed velocity (using a syringe pump
[69]) and measuring the pressure drop between
upstream and downstream (Fig. 2). The permeability
measured from permeation tests has been found

Fig. 2 Common testing configurations for articular

cartilage. All experiments are generally

conducted with the tissue immersed in saline
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to decrease from the articular surface, where k �
(0.3–0.7) � 10215 m4/N s, to the deep zone, where
k � (0.15–0.25) � 10215 m4/N s [8]. The permeability
measured tangentially to the articular surface (k1 or
k2) is similar to that measured normal to the articular
surface (k3) [70], supporting the premise of an isotro-
pic permeability tensor. The permeability signifi-
cantly decreases with increasing tissue compression
[14], as may be described by an exponential function,
k ¼ k0 exp (M tr E) [23, 71], where k0 is the per-
meability in the limit of zero dilatation and M is the
non-linear permeability coefficient. Typical values
are k0 � 1.7 � 10215 m4/N s and M � 4:3 [71].

In confined compression, a cylindrical tissue
sample is placed in a chamber of the same diameter,
with an impermeable side wall; the tissue is loaded
with a free-draining porous indenter of nearly the
same diameter to allow uniaxial tissue deformation
and fluid exudation upon tissue compression
(Fig. 2). The compressive aggregate modulus can be
determined from the equilibrium stress–strain
response, whereas the permeability can be obtained
by curve-fitting the transient response. For example,
for human patellar cartilage, HA ¼ 0.79+ 0.36 MPa
and k ¼ (4.7+ 3.6) � 10215 m4/N s for full-thickness
samples [28]. When incorporating intrinsic viscoe-
lasticity of the solid matrix, as per equations (7)
and (8), reported values for bovine cartilage are
HA ¼ 0.54+ 0.25 MPa, k ¼ (50+ 35) � 10215 m4/
N s, c ¼ 0.39+ 0.22, t1 ¼ 0.06+ 0.08 s, and t2¼

8.0+ 7.1 s [45]. The values observed for the hydrau-
lic permeability from curve-fitting the transient
response of confined compression tests are often
higher than direct measurements from permeation
tests, particularly when incorporating solid matrix
intrinsic viscoelasticity. This outcome suggests that
indirect measures of permeability are sensitive to
the curve-fitting procedure and the constitutive
assumptions for the solid matrix stresses. Using opti-
cal techniques, it is also possible to measure the local
strain distribution through the thickness of the articu-
lar layer, to yield depth-dependent values of HA [72].
Such measurements have demonstrated that the
compressive aggregate modulus of cartilage is smal-
lest at the articular surface and increases monotoni-
cally toward the deep zone, from 0.04 to 2.1 MPa in
the case of mature bovine articular cartilage [72].

Unconfined compression measurements consist
of loading a cartilage sample between two imperme-
able platens (Fig. 2). The equilibrium stress–strain
response yields the compressive Young’s modulus
along the loading direction. Optical measurements
of the equilibrium lateral and axial strains can be
used to measure Poisson’s ratio [73–75]. An added
advantage of unconfined compression is that tissue
samples can be cut into small cubes, so that
Young’s moduli and Poisson’s ratios can be

measured along three mutually perpendicular direc-
tions [36]. For example, in bovine cartilage, it has
been reported that E�Y1 ¼ 0:38+ 0:10MPa, E�Y2 ¼

0:38 + 0:13MPa, and E�Y3 ¼ 0:87+ 0:37MPa [36].
Depth-dependent measurements of Young’s mod-
ulus and Poisson’s ratio in compression demonstrate
that both are smallest at the articular surface and
increase towards the deep zone; for example, in
immature bovine cartilage, n� increases from 0.05
to 0.2 [75].

Curve-fitting of the transient unconfined com-
pression response may be used to estimate the per-
meability and tensile modulus tangential to the
loading direction as well as Poisson’s ratio
[32, 34, 76]. However, as the number of material con-
stants governing the response of a particular exper-
iment increases, it becomes necessary to perform
multiple tests on the same tissue sample to provide
more reliable estimates of these properties. For
example, in a study of immature bovine cartilage,
confined and unconfined compression tests of the
same tissue sample were combined to yield values
of five material coefficients: H�A3 ¼ 0.64+
0.22 MPa, HþA1 	 HþA2 ¼ 13.2+ 1.7 MPa, l2 ¼

0.48+ 0.23 MPa, k3 ¼ (0.36+ 0.10) � 10215 m4/N s,
and k1 	 k2 ¼ (0.61+ 0.21) � 10215 m4/N s [34]. To
explore the role of intrinsic solid matrix viscoelasti-
city, another study performed one confined com-
pression and two unconfined compression tests
(using slow and fast loading rates) on the same
tissue sample, to yield eight material coefficients for
immature bovine cartilage: H�A3 ¼ 0.51+ 0.18 MPa,
HþA1 	 HþA2 ¼ 8.8+ 2.5 MPa, l2 ¼ 0.30+ 0.13 MPa,
k3 ¼ (1.44+ 0.89) � 10215 m4/N s, k1 	 k2 ¼ (1.07+
0.46) � 10215 m4/N s, c ¼ 0.51+ 0.23, t1 ¼ 0.77+
0.54 s, and t2 ¼ 167+ 90 s [77]. The results of these
studies suggest that the viscoelasticity of cartilage
in compression is dominated by flow-dependent
effects, though the intrinsic viscoelasticity of the
solid matrix is not necessarily negligible.

Static torsional tests on cylindrical disks of
immature bovine cartilage (Fig. 2) have yielded a
shear modulus m ¼ 0:17+ 0:06 MPa [34]. Under
oscillatory torsional testing, the shear modulus has
been observed to increase with increasing loading
frequency, and with axial compressive strain; for
example, in immature bovine cartilage, the dynamic
shear modulus increased from 0.2 MPa at 0.01 Hz
to 0.4 MPa at 10 Hz, under 5 per cent compressive
strain, and from 1.0 to 1.8 MPa at 16 per cent strain
[41]. Using stress-relaxation experiments under
simple shear (Fig. 2), the intrinsic viscoelasticity
parameters of adult bovine cartilage have also been
measured, yielding m ¼ 0:37+ 0:14 MPa, c ¼ 0.27+
0.06, t1 � 0.0005 s, and t2 ¼ 376+ 116 s [40].

For tensile testing, cartilage explants are cut into
rectangular prismatic bars or dumbbell-shaped
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specimens [35, 78]. The tensile modulus is highest in
the superficial zone and decreases toward the deep
zone [79]; for example, in human knee cartilage,
EþY1 decreases from �21 to 1 MPa [35]. The tensile
modulus is also greatest in the direction parallel to
the split-line; for example, in human shoulder carti-
lage, EþY1 � 6.6 MPa and EþY2 � 4.6 MPa in the
humeral head superficial zone [43]. The tensile
modulus has been observed to increase significantly
with strain [43, 78, 79]. When combined with
osmotic loading, which places the tissue under a
state of tensile swelling strain, unconfined
compression experiments have yielded orthotropic
tensile properties for Young’s modulus and Poisson’s
ratio in the transitional range between tension and
compression [29]; in immature bovine cartilage, for
example, it has been found that EþY1 � 3.1 MPa,
EþY2 � 1.3 MPa, and EþY3 � 1.4 MPa under free-
swelling conditions.

4 INTERSTITIAL FLUID PRESSURIZATION

From a tribological perspective, one of the
remarkable characteristics of articular cartilage is
the pressurization of its interstitial fluid upon load-
ing, above and beyond the omnipresent osmotic
pressure resulting from the negatively charged pro-
teoglycans in the solid matrix. As the total stress in
cartilage is the superposition of the hydrostatic inter-
stitial fluid pressure and the solid matrix stress,
according to equation (1), it follows that the
interstitial fluid pressure contributes to the total
load supported by the tissue. While this pressure
remains elevated, cartilage may act as a ‘self-
pressurized hydrostatic bearing’ [15, 80]. This press-
urization can be formulated from theory and
measured experimentally.

Let p represent the osmotic pressure contribution in
the tissue; for example, from ideal Donnan law,
p ¼ Ru(cþ þ c�), where cþ and c� are the concen-
trations of sodium and chloride ions in the interstitial
fluid, respectively. These ion concentrations are related
to the proteoglycan FCD via the electroneutrality con-
dition, cþ ¼ c� þ cF. The pressure above and beyond
the osmotic pressure may be represented by
~p ; p� p; from a physical chemistry perspective, this
expression is directly related to the chemical potential
of the interstitial water. Substituting this relation into
equation (1) yields s ¼ � ~pI þ ~se, where ~se ;
�pI þ se represents the extra stresses in the tissue
inclusive of all osmotic effects. As a sidenote, theosmo-
tic modulus described earlier is related to p via P ¼

�@p=@(trE) [11, 29], and the ‘effective’ moduli of the
solid matrix, which incorporate the osmotic modulus,
may be construed as the moduli of ~se.

Consider the contact interface between two articu-
lar surfaces, where the unit normal vector to the
interface is denoted by n. The total normal load
transmitted across the interface is given by

W ¼

ð
A

(n � snþ p�)dA (14)

where A is the apparent contact area, n � sn is the
normal traction component at the contact interface
(which is negative in compression), andp� is the ambi-
ent pressure outside the tissue. The load supported by
the interstitial fluid pressure ~p is similarly given by

Wp ¼ �

ð
A

( ~p� p�)dA (15)

The interstitial fluid load support is defined as the
ratio of Wp=W [81, 82].

When cartilage is loaded, the interstitial fluid
immediately pressurizes. Because of the pressure gra-
dients, the fluid flows away from the loaded region so
that the pressure slowly subsides. Themagnitude and
duration of interstitial fluid load support varies some-
what with the loading configuration. In confined
compression, Wp=W ¼ 100 per cent immediately
upon loading, as the confining chamber does not
allow an instantaneous change in the thickness of
the tissue sample and the interstitial fluid needs
time to exude. In unconfined compression, the
instantaneous value of the fluid load support is [34]

lim
t!0þ

Wp

W
¼

1

1þ 2(H�A � l2)=(HþA � l2)
(16)

This theoretical result holds whether or not intrinsic
solid matrix viscoelasticity is taken into account
[38]. The implication from this relation is that the
disparity between tensile and compressive properties
is critical to the magnitude of interstitial fluid load
support in unconfined compression. When the
tissue exhibits the same modulus in tension and
compression, H�A ¼ HþA, the peak value of fluid
load support is only 33 per cent. However, when the
tensile modulus is much greater than the compres-
sive modulus, as in articular cartilage, HþA � H�A

and Wp=W approaches 100 per cent (given that l2 �
H�A from stability considerations). In unconfined
compression, the characteristic time constant for
the pressure to subside is proportional to a2=HþAk,
where a is the cylindrical sample radius. Theoretical
analyses of cartilage contact problems, where the
tissue is modelled as cylindrical or spherical layers
bonded to a rigid impermeable substrate, show that
the interstitial fluid pressurization also approaches
100 per cent in the early time response to loading
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[83–86]. If the contact area ismigrating on the articu-
lar layers, the fluid pressurization does not subside
under steady-state rolling or sliding conditions and
remains elevated at all times [87].

Cartilage interstitial fluid pressurization has been
measured experimentally in the configuration of
confined compression [88–91] and unconfined
compression [34, 92]. In these experiments, either ~p
or Wp is measured at an interface between the carti-
lage sample and an impermeable load-bearing sur-
face fitted with a fluid pressure transducer.
Simultaneous measurements of the total applied
load W, using a load cell, allow a direct experimental
evaluation of the interstitial fluid load support. Excel-
lent agreement has been observed between these
experimental measurements and theoretical predic-
tions from mixture theory [34, 90–92], as shown for
a representative confined compression case in
Fig. 3. These measurements confirm that interstitial
fluid pressurization significantly regulates the
response of cartilage in compression.

In classical hydrodynamic lubrication theories,
bearing surfaces are separated by a pressurized
fluid film that supports the applied normal load
and reduces the frictional force. In fluid-film lubrica-
tion, the fluid load support is 100 per cent. When the
fluid film becomes depleted, bearing surfaces come
into direct contact, the fluid load support reduces
to zero, and the lubrication typically breaks down.
In articular cartilage, however, when the porous sur-
faces come into direct contact, a very large fraction of
the applied normal load is still supported by the
pressurized interstitial fluid. (This occurs because
of the porous-deformable nature of cartilage; a
rigid porous bearing would not exhibit the same
response.) The component of the normal load
which is supported by the solid matrix of the contact-
ing articular layers is small, resulting in a negligible
frictional force [15, 81, 93]. As the interstitial fluid
pressure subsides, the fraction of the normal load
supported by the solid matrix and the resulting fric-
tional force concomitantly increase.

Thismechanismhas been formulatedwithin the fra-
meworkofmixture theory [94]. Letw represent the frac-
tion of the apparent contact area over which the solid
matrix of the opposing cartilage surfaces are in direct
contact; w may vary over the range 0 � w � (ws)2,
where ws is the solid area (or volumetric) fraction of
the tissue and 1� ws is the tissue porosity [94]. Over
the remaining area fraction, 1� w, the applied load is
supported by the interstitial fluid; the normal load sup-
ported by the solid matrix is then given by

W ss ¼ W � (1� w)Wp (17)

Assuming that the friction force is mostly contributed

by the contacting solidmatrix,F ¼ meqW
ss, the effective

friction coefficient of cartilage is found to vary with
interstitial fluid load support according to

meff ¼
F

W
¼ meq 1� (1� w)

Wp

W

� �
(18)

When the interstitial fluid load support achieves its
peak value (Wp=W � 1), meff is smallest and given by
mmin � wmeq. (In the limiting case of fluid-film lubrica-
tion, w ¼ 0 and mmin � 0 in this idealized model,
which neglects the lubricant viscosity.) Conversely,
when Wp=W ¼ 0, the friction coefficient achieves its
equilibrium value, meq.

This theoretical prediction has been validated exper-
imentally in a study where the frictional response of
bovine articular cartilage against glass was measured
simultaneously with the interstitial fluid load support
[95]. Under a step load W, the friction coefficient was

Fig. 3 (a) Axial creep displacement of bovine articular

cartilage in confined compression under a

constant load; the theoretical curvefit was

used to determine HA and k, and (b)

Interstitial fluid load support Wp=W measured

experimentally at the bottom of the test

chamber; the theoretical prediction was

obtained using HA and k as determined from

the creep response. Adapted with permission

from Soltz and Ateshian [90]
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observed to increase with time, whereas Wp=W
decreased [Fig. 4(a)]. A plot of meff versusW

p=W exhib-
ited a linear relationship as predicted by equation (18),
yielding a value of meq � 0:28 and w � 1:7 per cent
[Fig. 4(b)]. These results show very strong evidence in
support of the hypothesis that the temporal response
of the friction coefficient in cartilage is regulated by
the interstitial fluid load support.

Measurements of interstitial fluid load support are
experimentally challenging [92]; an alternative
approach is to predict Wp=W from a combination
of theory and experimental measurements of load
and deformation. For unconfined compression of
cylindrical cartilage samples under small strains, it
has been shown that [96]

Wp

W
¼

HþA þ l2

HþA � l2
1�

W0

W
�

Weq �W0

W

� �
u� u0

ueq � u0

� �� �
(19)

The normal loadW and axial deformation umay vary
with time. W0 ¼ W (0) represents the equilibrium
tare load at the beginning of the test and Weq ¼

W (t ! 1) represents the equilibrium load at the
end of the test, after the transient flow-dependent
response has subsided; u0 and ueq similarly represent
the axial deformation under tare and equilibrium
conditions. This formula is valid for any loading
history (such as creep or stress-relaxation), as long
as equilibrium is achieved at the end of the exper-
iment. It is based on the constitutive relation of
equation (4), reduced to the case of cubic symmetry,
and does not account for intrinsic viscoelasticity of
the solid matrix. The term in the square brackets is
determined entirely from experimental measure-
ments. The leading coefficient depends on the
material parameters HþA and l2; in general, l2 �
HþA in cartilage, so that this coefficient is slightly
greater than unity.

Fig. 4 (a) Simultaneous measurements of the

interstitial fluid load support Wp=W and

friction coefficient meff of bovine articular

cartilage against glass, under unconfined

compression creep. (b) A plot of meff versus

Wp=W shows a strong linear correlation as

predicted by equation (18). Data obtained

from the study of Krishnan et al. [95]

Fig. 5 (a) Interstitial fluid load support Wp=W and

friction coefficient meff of immature bovine

cartilage against glass, measured in

unconfined compression stress-relaxation.

Wp=W is predicted from experimental

measurements of load and displacement

responses using equation (19). (b) A plot of meff

versus Wp=W shows a linear correlation as

predicted by equation (18). Data obtained

from the study of Basalo et al. [96]
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Experimental measurements of meff for immature
bovine cartilage against glass under unconfined com-
pression stress-relaxation [96] show that the friction
coefficient decreases from meq to a minimum value
mmin, whereas the axial compressive tissue strain is
ramped up. When the ramp compression is stopped,
the friction coefficient returns to meq over time
[Fig. 5(a)]. The interstitial fluid load support pre-
dicted from equation (19) shows a mirror trend,
increasing from zero to its maximum value at the
end of the ramp compression, and subsequently
returning to zero [Fig. 5(a)]. Plotting meff versus
Wp=W shows a linear correlation [Fig. 5(c)], further
confirming the role of interstitial fluid load support
in the regulation of the cartilage friction coefficient.

5 CONCLUSION

Articular cartilage exhibits a mechanical behaviour
which is significantly more complex than that of tra-
ditional bearing materials. It is a porous-hydrated
tissue with very high water content, but very low
hydraulic permeability. Its solid matrix exhibits
tension–compression non-linearity, intrinsic viscoe-
lasticity, and orthotropic symmetry, and its material
properties are inhomogeneous through the depth of
the articular layer. The diffusive drag resulting from
the flow of interstitial fluid within the collagen–
proteoglycanmatrix produces a flow-dependent visco-
elastic response. With regard to its tribological func-
tion, as the bearing material of synovial joints, the
most important characteristic of articular cartilage is
the pressurization of its interstitial fluid upon loading.
This pressurized interstitial fluid can support most of
the load transmitted across the articular layers, even
though the collagen–proteoglycan matrix of the
opposing surfaces come into direct contact.

Thanks to the theoretical framework of mixture
theory, it has been possible to model and interpret
the complex response of cartilage to loading. From
this framework, it is understood that the disparity
between the tensile and compressivemodulus of car-
tilage is essential for promoting elevated interstitial
fluid pressurization under various loading configur-
ations. This finding explains the otherwise counter-
intuitive observation that cartilage exhibits a much
higher modulus in tension than compression, even
though it is primarily subjected to compressive loads.

The framework of mixture theory has also allowed
the formulation of a friction model which accounts
for the unique properties of the porous-permeable
articular cartilage, as summarized in equation (18).
This model predicts a linear relationship between
the friction coefficient of cartilage and its interstitial
fluid load support, with the friction coefficient
achieving its lowest value when the interstitial fluid

load support is greatest. Experimental measure-
ments have now validated this model, demonstrating
that nature has implemented an exquisite lubrica-
tion mechanism ideally suited to the loading
environment of synovial joints.

Though not addressed in this review, the main
degenerative disease afflicting articular cartilage is
osteoarthritis, which is characterized by a loss of pro-
teoglycans, fibrillation of the collagen matrix,
increase in water content, and loss of interstitial
fluid pressurization upon loading. Cartilage wear is
a major characteristic of advanced osteoarthritis.
The progressive changes in tribological properties
of cartilage with advancing stages of disease is an
active area of research.
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APPENDIX

Notation

A apparent contact area
Aa texture tensor
aa texture vector
c relaxation function

parameter
c� external bath concentration
cþ, c� counter-ion concentrations
cFr , c

F fixed-charge density
Dþ, D� counter-ion diffusivities
E strain tensor
Ei exponential integral function
EY, E+Y, E+Ya Young’s moduli
E0þ
+Y instantaneous Young’s

moduli
F friction force
f dynamic loading frequency
fc characteristic frequency
g relaxation function
HA, H+A, H+Aa aggregate moduli
I identity tensor
k, k0, ka hydraulic permeability
M permeability function

parameter
n contact interface unit

normal
p, ~p interstitial fluid pressure
p� external bath ambient

pressure
R universal gas constant
u solid matrix displacement
u, u0, ueq axial solid displacement
vs solid matrix velocity
W , W0, Weq normal load
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Wp load supported by fluid
pressure

w interstitial fluid flux

u absolute temperature
l, l+1, l2, l+aa, lab elastic moduli
m, ma shear moduli
meff , meq, mmin friction coefficients
n, n+ Poisson’s ratios
n0

þ

+ instantaneous Poisson’s
ratios

P osmotic modulus
p osmotic pressure
s total stress tensor
se, ~se extra stress tensor
sve viscoelastic extra stress

tensor
t1, t2 relaxation function

parameters
w contact area fraction
ws solid fraction
ww
r tissue porosity
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