
Nonlinear Continuum Mechanics
and Modeling the Elasticity of Soft Biological
Tissues with a Focus on Artery Walls

Ray W. Ogden

Abstract This chapter provides a detailed summary of the background from the
nonlinear theory of continuum mechanics that is required in the modeling of the
elastic properties of soft biological tissues. In particular, it highlights methods for
including the fibrous structure of such tissues within the constitutive description of the
material properties at the macroscopic level. Of particular relevance in this connection
are the so-called preferred directions associated with fibers and the structure tensors
and associated deformation invariants that are needed for taking these fibers and
their dispersed directions into consideration. These are incorporated into the material
models and the effect of fiber structure on the material response is then illustrated
with several basic examples. Generalizations of structure tensors are also used for
including within the theory the important residual stresses that are evident in unloaded
tissues such as arteries and the myocardium, and the influence of residual stresses
on the material response is illustrated by considering the extension and inflation of
a thick-walled circular cylindrical tube.

1 Introduction

This chapter is based on lectures given at the Summer School on ‘Biomechan-
ics: Trends in Modeling and Simulation’ in Graz, Austria, in September 2014, but
includes additional material that was not presented in the lectures. Effective modeling
of the mechanics of soft biological tissues, such as the layered walls of arteries, the
myocardium and skin, requires a sophisticated application of the nonlinear theory of
continuum mechanics. Within the structure of these tissues a key component is the
protein collagen, which endows the material with anisotropic properties because of
its significant stiffness relative to the surrounding material within which it is embed-
ded. We refer to the surrounding (less stiff) material as the matrix, which, depending
on the tissue under consideration, includes elastin fibers, proteoglycans, and smooth
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muscle cells, for example. Tissues have a naturally fibrous structure, which has a
strong influence on their mechanical response. Thus, from the mechanical perspec-
tive, it is important to be able to understand the influence of the fiber structure on
the overall mechanical response of the composite materials of which the fibers are
constituents, and nonlinear continuum mechanics provides the vehicle for analyzing
this response.

Consider, for example, a length of artery, which may be idealized as a circular
cylindrical tube, as illustrated in Fig. 1. Typically, in the simplest terms, an artery
contains two families of collagen fibers that are helically arranged and symmetrically
disposed relative to its axis, with the fiber directions locally lying within the tangent
plane, i.e., they have no radial component. Suppose that each family makes an angle
ϕ with the circumferential direction. Of course, the picture is much more complex
than we have indicated here—for example, there is dispersion of the fiber directions
within each family, there is in general a small radial component of each fiber direction
and the arrangement is different within each layer of an artery wall. These matters
will concern us later in the chapter, but for our initial illustration we consider the
simple situation depicted in Fig. 1.

This enables us to provide a simple illustration of the influence of fiber orientation
on the mechanical response of an artery. This is the content of Fig. 2, which shows how
the pressure in a circular cylindrical tube depends on its radial expansion (as measured
by the circumferential stretch—the ratio of inner deformed radius to undeformed
radius) for different fiber orientations in the absence of axial extension. The curves
shown, which exhibit highly nonlinear behavior, are characteristic of those for arteries
found in the literature and are based on a model of these characteristics (see, for
example, Holzapfel et al. 2000). The response becomes stiffer as the fiber directions
become closer to circumferential than axial, which reflects the high stiffness of
collagen fibers. The shapes are also very similar to those obtained in uniaxial tests on,
for example, strip samples of different artery wall layers (see, for example, Holzapfel
et al. 2005). There is a soft ‘toe’ region where the wavy collagen fibers provide little
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Fig. 1 Depiction of an undeformed artery as a thin-walled circular cylindrical tube with two
symmetrically and helically arranged families of (collagen) fibers locally lying in the tangent plane
and with directions making angles ϕ with the circumferential direction. The two symmetrically
arranged arrows indicate the directions of the tangents to the fibers at a general point
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Fig. 2 Representative curves of (dimensionless) pressure versus circumferential stretch on inflation
of an artery without axial extension for several values of the angle ϕ shown in Fig. 1. The curves
highlight both the nonlinearity of the material response and the significant effect of fiber orientation.
The response is much stiffer for fibers oriented more toward the circumferential direction than the
axial direction

if any resistance to tension, which is borne by the soft matrix, followed by rapid
stiffening as they reach their natural lengths.

We are concerned here with the elastic response of arteries, but the framework
of the nonlinear theory of elasticity underpins the basic elastic response of all soft
fibrous materials and is a starting point for more general continuum theories. Our aim
is to describe the elastic behavior of these materials by the construction of constitutive
laws, informed by data from experimental tests. The fiber directions within a tissue
endow the material locally with so-called preferred directions, as a result of which
the mechanical response of the material is anisotropic.

From the point of view of modeling the elastic properties of tissues the complica-
tions associated with the fibrous structure are well known and have been the subject
of many publications, and for an extensive list of references we refer to Holzapfel
et al. (2000), Gasser et al. (2006) and Holzapfel and Ogden (2010), for example.
Another issue, which increases the complication, is the existence of residual stresses
in unloaded tissue exemplified by the residual stress in artery walls, as evidenced by
the so-called opening angle test (Vaishnav and Vossoughi 1983; Chuong and Fung
1986). In this, a short ring of excised artery (and therefore unloaded radially and axi-
ally) when cut radially springs open significantly into a sector, thereby demonstrating
the existence of residual stress in the intact state. A two-dimensional idealized ver-
sion of this experimental test, in which a circular ring of artery springs open into the
sector of a circular ring, is illustrated in Fig. 3.

Thus, both residual stresses and the tissue structure need to be accounted for in the
development of constitutive laws for soft biological tissues, and this is the concern of
this chapter as we develop nonlinearly elastic constitutive laws for these materials,
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Fig. 3 A ring of artery (a) is cut radially (b) and deforms into a sector of a circular ring (c) with
the opening angle α, thus demonstrating that in the unloaded configuration (a) there exist (radial
and circumferential) residual stresses relief of which results in configuration (c)

with a focus on their passive and time-independent response. For general background
on the mechanics of tissues we refer to the classical text of Fung (1993) and for
detailed discussion of the mechanical properties of arteries and, more generally
cardiovascular solid mechanics, the works of Humphrey (1995, 2002) should be
consulted. For developments in the continuum description of arterial wall mechanics
we refer to Holzapfel et al. (2000, 2015), Gasser et al. (2006), and Holzapfel and
Ogden (2010) and references therein, while for the myocardium we cite Holzapfel
and Ogden (2009a). See also the collections of papers in the edited volumes by
Holzapfel and Ogden (2003, 2006, 2009b).

In Sect. 2, we provide a description of the kinematics of deformation, introduce
a number of stress tensors and derive the equations governing equilibrium, while in
Sect. 3 we focus on general aspects of the constitutive law of an elastic material based
on a strain-energy function and the associated stress tensors. More comprehensive
treatments of the nonlinear theory of elasticity can be found in, for example, standard
texts such as Ogden (1997, 2003a), and Holzapfel (2000) and the collection of articles
in Fu and Ogden (2001). Particular attention is paid here to the role of structure tensors
and invariants associated with preferred directions in the development of the strain-
energy function for different material symmetries. The notion of a structure tensor
is also used to include residual stress in the constitutive law of an elastic material.

In Sect. 4 the theory for fiber-reinforced materials, with two fiber families (and
without residual stress), is then applied in a basic application to homogeneous defor-
mations, in particular to the problem of pure homogeneous strain of a thin sheet of
material, a setup that is often used in experiments for helping to characterize the
mechanical properties of fibrous materials. The general results are illustrated for
a special choice of constitutive law which has a role, in various modified forms,
throughout the chapter.

This is followed, in Sect. 5, by an application of the theory to a key boundary-
value problem involving a nonhomogeneous deformation relevant to the behavior
of arteries, namely that of the extension and inflation of a thick-walled elastic tube
reinforced symmetrically with two families of fibers. The corresponding thin-walled
approximation is derived and used for illustration of the pressure and axial load
response of a tube. The difference between the response with and without fibers and
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the effect of different fiber orientations is highlighted by applying the material model
from Sect. 4. The effect of residual stress is then illustrated by a further application to
the problem of extension and inflation of a thick-walled elastic tube in Sect. 5.3, and
a particular form of the residual stress is chosen along with simple constitutive laws,
enabling explicit expressions to be obtained for the pressure and axial load applied
to achieve a prescribed axial extension and inflation of the tube. For purposes of
numerical calculation and graphical illustration, a range of particular values of the
parameters of the problem is selected, leading to comparative plots of the pressure
and axial load for a residually stressed tube, with and without fiber reinforcement.

The model strain-energy function fits data for the overall response of an artery,
and it also fits well the data for the medial layer, but it does less well for the intimal
and adventitial layers. One possible explanation for this is that rather then being per-
fectly aligned the fibers are dispersed in their orientations, and this is more evident
in the adventitia than in the media, for example. Therefore, to take account of fiber
dispersion the model was modified by Gasser et al. (2006). In Sect. 6 is described the
model based on fiber dispersion, which is accounted for via a so-called generalized
structure tensor and associated generalized invariants. In particular, for three dimen-
sions a rotationally symmetric dispersion is considered which involves just a single
dispersion parameter as a measure of the degree of dispersion. A two-dimensional
counterpart of this is also examined.

For the rotationally symmetric model a π -periodic von Mises distribution is used
to quantify the dispersion, and with the same general structure the model strain-
energy function from the previous sections is modified to accommodate the disper-
sion. This extended model is applied to the extension–inflation problem to illustrate
the significant difference that inclusion of dispersion makes. Then, using the model
and data relating to the adventitia of a human iliac artery, the problem of the nonho-
mogeneous uniaxial extension of strips from the circumferential and axial directions
is examined using a finite element calculation, further highlighting the significant
influence of dispersion.

However, it has been found in the recent extensive series of experiments of Schriefl
et al. (2012) on separate intimal, medial, and adventitial layers of human thoracic
and abdominal aortas and common iliac arteries that the fiber dispersion does not
possess rotational symmetry in three dimensions. The dispersion was found to be
essentially symmetric in the circumferential/axial plane (in-plane) but has a small
radial component (out-of-plane). To accommodate these new data the rotationally
symmetric model of Gasser et al. (2006) has therefore been adapted in Holzapfel et al.
(2015) by developing new generalized structure tensors and generalized invariants.
This work is described in Sect. 6.4. In particular, this modification uses a bivariate von
Mises distribution to characterize the in-plane and out-of-plane dispersions involving
two dispersion parameters, one in-plane and one out-of-plane, as distinct from the
single dispersion parameter associated with a rotationally symmetric dispersion.

Within the same general structure as for the previous models, the strain-energy
function has been modified merely by updating the definitions of the generalized
invariants. Based on a set of data obtained from histology and imaging, values of
the dispersion parameters and mean fiber orientations were exemplified in Schriefl
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et al. (2012), and, with these values, the corresponding material parameters were
determined in Holzapfel et al. (2015) by fitting data from uniaxial tension tests
on circumferential and axial specimens of an adventitial layer of a human non-
atherosclerotic abdominal aorta. Following Holzapfel et al. (2015) this complete set
of parameters is used finally in a finite element simulation of a nonhomogeneous
uniaxial extension test on this adventitial layer. Some concluding remarks form the
content of Sect. 7.

In Holzapfel et al. (2015) we have provided a brief review of dispersion mod-
els, which are based on two main approaches, namely the angular integration (AI)
approach pioneered by Lanir (1983), and the generalized structure tensor (GST)
approach due to Gasser et al. (2006). We focus on the GST approach in this chapter
and refer the reader to Holzapfel et al. (2015) for pointers to the literature.

2 Fundamentals of Continuum Mechanics

Here we summarize the key notation used for describing the kinematics associated
with continuum deformation, followed by a brief account of the stress tensors used
to describe the stress within a deformed material and the associated equilibrium
equations. We do not analyze (time-dependent) motion in this chapter. For more
details of the background for this section we refer to Ogden (1997) and Holzapfel
(2000), for example.

2.1 The Geometry of Deformation

As is usual in continuum mechanics, we consider a material body which, when
unloaded (i.e., when not subject to either surface tractions or body forces) occupies
a reference configuration, which we denote by Br, the boundary of which is denoted
∂Br. Let an arbitrary point of Br be labeled by its position vector X. After deforma-
tion the body occupies the deformed configuration, denoted B, which has boundary
∂B. The material point X is then taken to the new position vector x in B, as depicted
in Fig. 4.

Mathematically, the deformation is described by the deformation function χ ,
which is a one-to-one, onto mapping from Br to B. Thus, we write

x = χ(X) for all X ∈ Br, (1)

and, without further comment, χ is assumed to possess sufficient regularity for the
analysis in this chapter.

In standard notation the second-order tensorF, the so-called deformation gradient
tensor, denotes the gradient of x = χ(X), explicitly
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Fig. 4 On the left-hand side is depicted a body in its (unloaded) reference configuration Br , which
has boundary ∂Br . As a result of the deformation χ the body occupies the deformed configuration
B, which has boundary ∂B, as depicted on the right-hand side

F = Grad x = Grad χ(X), (2)

where Grad denotes the gradient with respect to X, as distinct from the gradient
grad with respect to x. Likewise Div and div denote the divergence operators with
respect to X and x, respectively. We shall also use the notations (•)T and tr (•),
respectively, to denote the transpose and trace of a second-order tensor (•). With
reference to a rectangular Cartesian coordinate system, we write the components
of F as Fiα = ∂xi/∂Xα , where xi and Xα , i, α ∈ {1, 2, 3}, are the components of
x and X, respectively, Greek and Roman indices being associated with Br and B,
respectively.

We use the standard notation J for the determinant det F of F and, by convention,
this is taken to be positive, i.e.,

J ≡ det F > 0, (3)

which is clearly satisfied when B coincides with Br since then x = X, F = Ir, the
identity tensor in Br, and det F = 1. The physical interpretation of J is that it repre-
sents the local ratio of an infinitesimal volume element dv in B to the corresponding
volume element dV in Br based on X in Br, i.e., dv = JdV .

Thus, for an isochoric (volume preserving) deformation J = 1, while for an
incompressible material the constraint

J ≡ det F = 1 (4)

must be satisfied at each X in Br. This constraint is important here since many soft
biological tissues, including artery walls, can be treated as incompressible.

We now define an important kinematical quantity known as the stretch λ(M) in the
direction of a unit vector M based at X in Br. Let dS be the length of an infinitesimal
line element of material lying along the direction M in Br. Under the deformation
this becomes the infinitesimal line element FMdS based at x in B, which has length
|FM|dS. Thus, the ratio of deformed to undeformed length of the line element is
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|FM|, which defines the stretch in the direction M:

λ(M) = |FM| = [(FTFM) · M]1/2. (5)

The product FTF in (5) defines the right Cauchy–Green deformation tensor,
denoted C, which has Cartesian components Cαβ = FpαFpβ , where the usual Ein-
stein summation convention is used for repeated indices. Since Cαβ has two Greek
indices it is associated with Br, and C is referred to as a Lagrangian tensor. This
distinguishes it from its Eulerian counterpart, the left Cauchy–Green deformation
tensor B = FFT, which has Cartesian components Bi j = FiαFjα and is associated
with B. For future reference we record here the definitions

B = FFT, C = FTF. (6)

Scalar quantities known as the principal invariants of B (the same as those of C)
are the coefficients I1, I2, I3 in the identity

B3 − I1B2 + I2B − I3I = O, (7)

whereO is the zero tensor and I the identity tensor inB. This is the Cayley–Hamilton
theorem, and I1, I2, I3 are defined by

I1 = tr (B), I2 = 1

2
[I 2

1 − tr (B2)], I3 = det B ≡ J 2. (8)

Since I3 = J 2, we see that for an incompressible material I3 = 1. Furthermore, for
a plane strain deformation I2 = I1 and then, for an incompressible material, (7)
factorizes as

(B − I)[B2 − (I1 − 1)B + I] = O, (9)

thus yielding the two-dimensional (plane strain) version of the Cayley–Hamilton
theorem for an incompressible material, namely

B2 − (I1 − 1)B + I = O, (10)

wherein the tensors are now two-dimensional.
Valuable further analysis of the local deformation governed by F is provided by

the polar decomposition theorem, which enables F to be expressed in the two forms

F = RU = VR, (11)

each of which is uniquely defined. Here, R is a proper orthogonal tensor, which
represents a rotation, andU andV are positive definite and symmetric tensors, termed
the right and left stretch tensors, respectively. Their symmetry allows us to introduce
the spectral decompositions
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U =
3∑

i=1

λiu(i) ⊗ u(i), V =
3∑

i=1

λiv(i) ⊗ v(i), (12)

where λi > 0, i ∈ {1, 2, 3}, are the principal stretches, u(i) and v(i) are the (unit)
eigenvectors of U and V, respectively, and ⊗ denotes the tensor product: u(i) and
v(i) are referred to as the Lagrangian principal axes and Eulerian principal axes,
respectively. By taking M = u(i) in the definition (5) of stretch, we see that λ(u(i)) =
λi , the principal stretch corresponding to u(i).

The connections
C = U2, B = V2 (13)

are also recorded here for later reference. These each have eigenvalues λ2
1, λ

2
2, λ

2
3,

and their principal invariants I1, I2, I3 defined by (8) may now be expressed in terms
of the principal stretches as

I1 = λ2
1 + λ2

2 + λ2
3, I2 = λ2

2λ
3
3 + λ2

3λ
2
1 + λ2

1λ
2
2, I3 = λ2

1λ
2
2λ

2
3. (14)

Note that these are symmetric functions of λ1, λ2, λ3.
Finally in this section we note that from (3), (11) and (12) we may express J in

the alternative forms

J = det F = det U = det V = λ1λ2λ3. (15)

In particular, for an incompressible material, the principal stretches satisfy the con-
straint

λ1λ2λ3 = 1. (16)

2.2 Stress and Equilibrium

While deformation is essentially concerned with geometry, the forces acting on a
body that cause the deformation and changes in geometry are described in terms of
stresses, and this section therefore introduces the notion of stress and its representa-
tion in terms of tensors. For this purpose we consider an arbitrary subdomain of Br,
denoted Dr , and its deformed counterpart D in B. Let ∂Dr and ∂D be the boundaries
of Dr and D , respectively. An element of area dA on ∂Dr with unit outward normal
N is deformed into the area da on ∂D with unit normal n, as depicted in Fig. 5.

According to Cauchy’s stress theorem, the surface force acting on the area da
due to its contact with the surrounding material depends linearly on the normal n
and may be written as σ Tnda, where σ is the Cauchy stress tensor (a second-order
tensor). If the deformation results from the combined action of surface tractions on
∂B and a body force b per unit mass then for equilibrium of the domain D the total
force on it must vanish, i.e.,
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Fig. 5 An area element dA with unit outward normal N on the boundary ∂Dr of the reference
domain Dr ⊂ Br deforms into the area element da with unit outward normal n on the boundary
∂D of the domain D ⊂ B under the deformation χ

∫

∂D
σ Tn da +

∫

D
ρb dv ≡

∫

D
(div σ + ρb) dv = 0, (17)

where ρ is the mass density per unit volume in D , dv is an element of volume in
D , and the divergence theorem has been applied to the surface integral to obtain the
volume integral on the right-hand side.

Assuming that the integrand on the right-hand side of (17) is continuous the
arbitrariness of D allows us to deduce the standard local form of the equilibrium
equation, namely

div σ + ρb = 0. (18)

If there are no intrinsic couple stresses in the material then symmetry of σ follows
from the equilibrium of the moments of the forces acting on D , so that σ T = σ , and
the transpose on σ is no longer needed.

The equilibrium equation (18) is Eulerian in nature since x is the independent
variable. The equation may also be expressed in Lagrangian form, with X as the
independent variable, by using the standard kinematic identity Div (JF−1) = 0 and
the definition

S = JF−1σ (19)

of the so-called nominal stress tensor, which leads to the connection Div S = Jdiv σ .
By defining the mass density ρr per unit reference volume, invoking conservation of
mass ρrdV = ρdv and recalling that dv = JdV , we obtain the connection

ρr = Jρ, (20)

and hence the equilibrium equation (18) can be expressed in the equivalent form as

DivS + ρrb = 0. (21)
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The transpose ST of S is known as the first Piola–Kirchhoff stress tensor. For an
isochoric deformation (J = 1) we have ρ = ρr, which becomes an identity for an
incompressible material.

Note that, unlike σ , S is not in general symmetric but it follows from (19) and the
symmetry of σ that

STFT = FS. (22)

Another stress tensor that is often used, particularly in the computational mechan-
ics community, is the second Piola–Kirchhoff stress tensor, here denoted P. It is
symmetric and defined here for later reference through its connections with σ and
S, namely

P = JF−1σF−T = SF−T, (23)

where F−T = (F−1)T = (FT)−1.

2.2.1 Residual Stress

At this point we introduce the notion of residual stress. Here we adopt the definition
of Hoger (1985) that residual stress is a stress distribution that exists in the reference
configuration Br in the absence of loads, either surface tractions or body forces,
and should be distinguished from other types of initial stresses (often referred to as
prestresses) that are associated with loads. We denote the residual (Cauchy) stress by
τ and assume that there are no intrinsic couple stresses in Br, so that τ is symmetric:
τT = τ . The equilibrium equation that must be satisfied by τ is, from (21) with
b = 0,

Div τ = 0 in Br. (24)

Since there are no surface tractions, τ must also satisfy the boundary condition

τN = 0 on ∂Br. (25)

It is worth emphasizing at this point that residual stresses are necessarily nonuniform
and a material with residual stress is itself inhomogeneous. This follows from the
identity Div (τ ⊗ X) = (Div τ ) ⊗ X + τ , the use of (24), application of the diver-
gence theorem and then (25), which leads to

∫

Br

τ dV = O. (26)

Clearly, a nontrivial τ cannot be uniform, and the character of the inhomogeneity
depends on the geometry of the considered material body.
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3 Constitutive Theory

In this section we focus on the characterization of the elastic behavior of solids
based on the existence of a strain-energy function. Materials which possess a strain-
energy function are referred to as hyperelastic. First, by considering the virtual work
of the forces acting on the body, we motivate the introduction of a strain-energy
function. We then examine its general properties and its functional dependence for
particular classes of material symmetry through the use of invariants. We also show
how residual stress can affect the material response by its inclusion in the argument
of the strain-energy function.

3.1 The Elastic Strain-Energy Function

Consider the work done by the forces acting on the regionD in a virtual displacement,
i.e., a small increment in x, which we denote by ẋ. This work is

∫

∂D
(σn) · ẋ da +

∫

D
ρb · ẋ dv =

∫

D
tr (σgrad ẋ) dv, (27)

where the right-hand side has been obtained by an application of the divergence
theorem and use of the equilibrium equation (18). By means of the connections (19)
and dv = JdV this may also be written

∫

Dr

tr (SḞ) dV, (28)

where Ḟ = Grad ẋ. The work done is converted into stored elastic energy if there
exists a scalar function W (F) such that

Ẇ = tr (SḞ), (29)

in which case (28) represents the virtual change in the total elastic energy stored in
Dr. We assume that a strain-energy function W (F) exists, defined per unit volume in
Dr. If the material is inhomogeneous then W also depends separately on X, but for
a homogeneous material the dependence on X is through F(X) alone.

Because of (29) the nominal stress is considered to be work conjugate to the
deformation gradient. If there are no constraints on F then, since Ḟ is arbitrary, we
obtain the stress deformation relation

S = ∂W

∂F
, (30)

or, in index notation,
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Sαi = ∂W

∂Fiα
, (31)

the latter defining the convention used here for the order of the indices when differ-
entiating with respect to Fiα .

If F is subject to a constraint then its components are no longer independent and Ḟ
is not arbitrary so that (30) requires modification. In the case of the incompressibility
constraint, for example, (30) is replaced by

S = ∂W

∂F
− p F−1, det F = 1, (32)

where p is a Lagrange multiplier associated with the constraint.
The corresponding Cauchy stress tensor is then obtained from (19) as

σ = J−1F
∂W

∂F
, σ = F

∂W

∂F
− p I, (33)

for unconstrained and incompressible materials, respectively, with J = det F = 1 in
the latter, where I is again the identity tensor in B.

Let us take the strain energy to be measured from Br, where F = Ir, the identity
tensor in Br. This imposes the condition

W (Ir) = 0. (34)

If the configuration Br is stress free then we have

∂W

∂F
(Ir) = O,

∂W

∂F
(Ir) − p(r) Ir = O, (35)

for unconstrained and incompressible materials, respectively, where p(r) is the spe-
cialization of the Lagrange multiplier p to Br. The reference configuration Br is
sometimes referred to as a natural configuration if the conditions (34) and (35)1 (or
(35)2) hold simultaneously.

If Br is not stress free, but supports a residual stress τ then (35) does not hold
and Br is referred to as a residually stressed configuration. In this case W , still
measured from Br, depends on τ as well as F. We therefore include τ explicitly in
the arguments of W and write

W = W (F, τ ). (36)

We emphasize that τ , being inhomogeneous, depends onX, and therefore the material
itself is also inhomogeneous if it is residually stressed.

The formulas (30)–(33) are unaffected by the presence of τ but we now include
the dependence on τ and write
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S = ∂W

∂F
(F, τ ), σ = J−1FS = J−1F

∂W

∂F
(F, τ ) (37)

for an unconstrained material, and

S = ∂W

∂F
(F, τ ) − pF−1, σ = FS = F

∂W

∂F
(F, τ ) − pI (38)

for an incompressible material.
In Br there is no distinction between different stress tensors and each one must

reduce to the residual stress, in which case

τ = ∂W

∂F
(Ir, τ ), τ = ∂W

∂F
(Ir, τ ) − p(r)Ir, (39)

for an unconstrained and incompressible material, respectively, where again Ir is the
identity tensor in Br and p(r) represents the value of p in Br (see, for example,
Shams et al. 2011). These equations can be thought of as conditions providing either
constraints on the residual stress for a given strain-energy function or constraints
on the properties of the strain-energy function for a known residual stress. Some
specializations of these conditions will be seen in later sections. These are particular
constraints that apply for a residually stressed material and should be respected
when specific models are constructed. Forms of W should also be consistent with
data obtained from experimental tests that elicit the elastic properties of materials
they aim to model. Other constraints may arise from basic physical and mathematical
considerations, but we do not address these here. However, a key constraint, which
should always be adopted, arises from the notion of objectivity, otherwise referred
to as material frame indifference, which we discuss in the following.

3.2 The Principle of Objectivity

For a residually stressed material a general strain-energy function must satisfy the
conditions (39), but it is not as yet subject to any other restrictions. At each X it
depends on F and τ in an otherwise general way. However, not all candidates for
W (F, τ ) are admissible, and, importantly, after deformation W should be unaffected
by any superimposed rigid body transformation. Such a transformation has the form
x∗ = Qx + c, where, since we are not considering time dependence,Q is an arbitrary
constant rotation tensor and c is an arbitrary constant vector. The deformation gradient
F∗ = Grad x∗ associated with this new deformation is then given byF∗ = QF. Noting
that τ is defined in the reference configuration and is not therefore affected by the
rotation in B, the requirement imposed on W is that it must be invariant under this
transformation, i.e.,

W (QF, τ ) = W (F, τ ) (40)
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for arbitrary proper orthogonal Q and for any deformation gradient F.
This restriction on W is referred to as the principle of objectivity, or just objectivity

for brevity, and from now on we regard W as objective.
From the polar decomposition (11)1 we obtain QF = QRU and then by choosing

Q = RT, Eq. (40) yields W (F, τ ) = W (U, τ ), which shows that W is independent
of the rotational part R of the deformation gradient and depends on F only through
the stretch tensor U. Equivalently, since C = U2, we can regard W as a function of
C and τ . Each of C and τ is a Lagrangian tensor, unaffected by a rotation in B,
and therefore any function of these two tensors is necessarily objective. In particular,
without changing the notation for W on changing its argument, we write the strain-
energy function as

W (C, τ ), (41)

which automatically accommodates the required objectivity.
From this form of W we obtain the second Piola–Kirchhoff stress tensor

P = 2
∂W

∂C
, P = 2

∂W

∂C
− pC−1 (42)

for unconstrained and incompressible materials, respectively. We remark that P and
C/2 are therefore work conjugate stress and deformation tensors. In this case the
incompressibility constraint is I3 = det C = 1.

3.3 Material Symmetry (with no Residual Stress)

Objectivity applies irrespective of the material properties, but other restrictions arise
that depend on the character of the material considered, and, in particular, the mate-
rial may possess some intrinsic symmetry in its reference configuration. In order to
examine such symmetry we consider τ = O since nonzero residual stresses compli-
cate the arguments. For discussion of symmetry considerations in the presence of
residual stress we refer to Hoger (1985) and Ogden (2003b).

If the material response is the same with respect to different reference configura-
tions then this implies that the material has an intrinsic symmetry, and the transfor-
mation between the reference configurations is then known as a symmetry transfor-
mation.

To be specific, consider two reference configurations, denoted Br and B′
r, and

let a typical material point in these configurations have position vectors X and
X′, respectively. Suppose the transformation (deformation) from Br to B′

r has the
deformation gradient Q′ = GradX′, which should be distinguished from the rota-
tion Q in B. Then the deformation gradients of B relative to Br and B′

r, respec-
tively, are F and F′ = FQ′−1, as depicted in Fig. 6. In components the latter reads
∂xi/∂X ′

α = (∂xi/∂Xβ)(∂Xβ/∂X ′
α).
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Fig. 6 Depiction of the
reference configurations Br
and B′

r and the deformed
configuration B connected
by the deformation gradients
F, F′ and Q′, with F = F′Q′
in the space of deformation
gradients .

.

B

Br

B′
r

F

F′

Q′

The right Cauchy–Green tensor relative to Br is C, and that relative to B′
r is

C′ = F′TF′ = Q′−TCQ′−1. If the material properties, as characterized by the strain-
energy function W , are independent of this change of reference configuration then
we must have, for the given Q′,

W (Q′−TCQ′−1
) = W (C) (43)

for all right Cauchy–Green deformation tensors C, where the argument τ = O has
been omitted from W . Such a Q′ identifies a symmetry of the material in the original
reference configuration Br.

The set of all such changes of reference configuration for which (43) holds, i.e.,
the set of Q′ satisfying (43) for all right Cauchy–Green deformation tensors C, forms
a group of transformations, called the symmetry group of the material relative to the
reference configuration Br. In this chapter we consider only symmetries for which
the Q′’s are proper orthogonal transformations, so that Q′−1 = Q′T. It should be
emphasized that the rotation Q′ is applied in Br, whereas Q is applied in B. The
two rotations are entirely independent. We now consider the consequences of (43)
for some particular classes of symmetry groups.

3.3.1 Isotropy

With the restriction to proper orthogonal transformations, Eq. (43) becomes

W (Q′CQ′T) = W (C). (44)

An isotropic elastic material is one for which the symmetry group is the full proper
orthogonal group, i.e., (44) holds for arbitrary proper orthogonal Q′. Equation (44)
implies that W is an isotropic function ofC. This means, in particular, that W depends
on C through just three scalar deformation variables, which typically are taken to
be the three principal invariants I1, I2, I3 defined in (8) in terms of the left Cauchy–
Green tensor B. For convenience we now repeat them here in terms of C:
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I1 = trC, I2 = 1

2
[I 2

1 − tr (C2)], I3 = det C. (45)

We now write W = W (I1, I2, I3), and from (30) the nominal stress is given by

S = ∂W

∂F
=

3∑

i=1

Wi
∂ Ii
∂F

, (46)

where we have used the shorthand notation Wi = ∂W/∂ Ii , i = 1, 2, 3. All the infor-
mation about material properties is contained in the coefficients Wi , i = 1, 2, 3,
while the derivatives ∂ Ii/∂F are purely kinematic quantities. The latter can be cal-
culated simply from (45) as

∂ I1
∂F

= 2FT,
∂ I2
∂F

= 2(I1FT − CFT),
∂ I3
∂F

= 2I3F−1, (47)

and an expanded expression for S then follows from (46). The corresponding Cauchy
stress tensor σ = J−1FS is then given by

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I. (48)

For an incompressible material I3 ≡ 1, W depends only on I1 and I2 and, instead
of (48), we have

σ = 2W1B + 2W2(I1B − B2) − p I, (49)

where p is the Lagrange multiplier (an arbitrary hydrostatic pressure) appearing in
(33)2.

Since, by (14), I1, I2, I3 are symmetric functions of the stretches, we can also
think of W as a symmetric function of the stretches and write W = W (λ1, λ2, λ3),
and it follows that

λi
∂W

∂λi
= 2λ2

i W1 + 2λ2
i (I1 − λ2

i )W2 + 2I3W3, i = 1, 2, 3. (50)

By (48) σ has the same principal axes as B. Thus, (50) represents the principal com-
ponents of (48) and enables the principal Cauchy stresses, denoted σi , i = 1, 2, 3,
to be identified as

σi = J−1λi
∂W

∂λi
, i = 1, 2, 3, (51)

for an unconstrained material. For an incompressible material this is replaced by

σi = λi
∂W

∂λi
− p, i = 1, 2, 3, (52)

which correspond to the eigenvalues of Eq. (49).
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Fig. 7 Transverse isotropy
with preferred direction M in
the reference configuration.
The material properties are
independent of rotations Q′
about M and reversal of the
direction of M: M → −M

M

−M

Q

3.3.2 One Preferred Direction (Transverse Isotropy)

If there is a single preferred direction in the material in its reference configuration,
as in the case of a fiber-reinforced material with a single family of (locally) aligned
fibers, then we identify that direction by the unit vector M in Br, which in general
depends on the point X. Such a material is said to be transversely isotropic with
direction of transverse isotropyM. In the plane transverse toM the material response
is isotropic.

The material properties are invariant with respect to an arbitrary rotation about
the direction M and to reversal of M, i.e., to rotations Q′ such that Q′M = ±M, as
depicted in Fig. 7.

From the mathematical point of view the strain-energy function must satisfy (44)
for all such Q′. Thus, W depends on M as well as C and we may regard W as a
function of both M and C, but since material properties are treated as independent of
the sense of M we can consider the M dependence to be through the tensor product
M ⊗ M and write W (C,M ⊗ M) instead of just W (C), and note that M ⊗ M is
unaffected by reversal of M. In general, M depends on X, in which case the material
is inhomogeneous. This is left implicit in W (C,M ⊗ M) since material symmetry
is a local property.

It follows that transverse isotropy may be characterized by W being an isotropic
function of the two symmetric tensors C and M ⊗ M (Liu 1982); for general back-
ground on transverse isotropy and more generally on the theory of invariants we refer
to Spencer (1971, 1972, 1984). Noting thatQ′M = MQ′T, the symmetry requirement
is then

W (Q′CQ′T,Q′M ⊗ Q′M) = W (C,M ⊗ M) (53)

for all orthogonal Q′. In this case there is no difference whether we restrict attention
to proper orthogonal Q′ or consider all orthogonal Q′ since we may replace Q′ by
−Q′ in (53) without changing its consequences. Similarly in Eq. (44). The tensor
M ⊗ M is referred to as a structure tensor.

The symmetry (53) is equivalent to W being a function of five independent invari-
ants for an unconstrained material in three dimensions. These are, for example, the
three isotropic invariants I1, I2, I3 defined in (45) and two invariants that depend on
M and C, these usually being denoted I4 and I5. The choice of I4 and I5 is not unique
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but, typically, they are defined by

I4 = M · (CM), I5 = M · (C2M). (54)

Note that in terms of the stretch λ(M) defined in (5), I4 = λ(M)2, the square of the
stretch in the direction M. The invariant I5 does not have a similar simple interpreta-
tion, and we refer to Merodio and Ogden (2002) for discussion of a related invariant
which does have a direct physical interpretation.

Then, by expanding out the formula (30) based on the invariants I1, . . . , I5, simi-
larly to that in the isotropic case, and using again the derivatives (47), supplemented
by the derivatives

∂ I4
∂F

= 2M ⊗ FM,
∂ I5
∂F

= 2(M ⊗ BFM + CM ⊗ FM), (55)

we obtain an expression for the nominal stress tensor S, which we do not write here.
The corresponding Cauchy stress tensor σ = J−1FS for a transversely isotropic
material is then given by

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m),

(56)

wherem = FM is the ‘push forward’ ofM fromBr toB and nowWi = ∂W/∂ Ii , i =
1, . . . , 5, with W = W (I1, I2, I3, I4, I5). This recovers the formula (48) for an
isotropic material when W4 = W5 = 0.

For an incompressible material I3 ≡ 1, so only the four independent invariants
I1, I2, I4, I5 are required inW to characterize the material, withW = W (I1, I2, I4, I5)
in general. Then, instead of (56), we have

σ = 2W1B + 2W2(I1B − B2) + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m) − p I.

(57)

Plane Strain

If attention is restricted to plane strain deformations, for example, then the number
of independent invariants is reduced. In particular, for plane strain with M in the
considered plane the connections

I2 = I1 + I3 − 1, I5 = (I1 − 1)I4 − I3 (58)

may be deduced (Merodio and Ogden 2002, 2003), and only three independent
invariants remain, which we can take as I1, I3 and I4, for example. In the incom-
pressible case just two invariants remain, namely I1 and I4, and we define the plane
strain specialization of W , denoted Ŵ , by
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Ŵ (I1, I4) = W (I1, I2, I4, I5) with I2 = I1, I5 = (I1 − 1)I4 − 1. (59)

For plane strain m = FM lies in the considered plane, and if we identify planar
second-order tensors with a superposed hat ˆ then the plane strain version of Cauchy
stress, denoted σ̂ , becomes simply

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m − p̂Î, (60)

where Ŵ1 = ∂Ŵ/∂ I1 and Ŵ4 = ∂Ŵ/∂ I4 and p̂ is an adjusted form of p that includes
various derivatives of W that contribute only hydrostatic terms to σ̂ .

3.4 A General Invariant Formulation

As we have seen, both isotropy and transverse isotropy can be formulated in terms of
invariants. More generally, suppose that there are N independent invariants associated
withC and the material structure. Let these be denoted by I1, I2, . . . , IN . They depend
on C and the material structure but not otherwise on the properties of the material,
i.e., not on the particular form of W . Thus, we can write W = W (I1, I2, . . . , IN ), and
for an unconstrained material the nominal and Cauchy stress tensors can be expanded
as

S =
N∑

i=1

Wi
∂ Ii
∂F

, σ = J−1F
N∑

i=1

Wi
∂ Ii
∂F

, (61)

where we have extended the notation Wi to i = 1, 2, . . . , N . The corresponding
expressions for an incompressible material are

S =
N∑

i=1,i 	=3

Wi
∂ Ii
∂F

− pF−1, σ = F
N∑

i=1,i 	=3

Wi
∂ Ii
∂F

− pI. (62)

In general, the derivatives Wi depend on the material properties through the strain-
energy function W , but, independently of that, apart from the case of isotropy, some
information about the material structure is also contained within the derivatives
∂ Ii/∂F, as for a transversely isotropic material for which ∂ I4/∂F and ∂ I5/∂F depend
on the structure through M.

In the remainder of this section we apply the above first to a material with two
preferred directions and second to a material with a general residual stress but no
preferred directions.
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3.4.1 Two Preferred Directions and the Special Case of Orthotropy

Consider the situation in which there are two preferred directions in the reference
configurationBr of the material, identified by the unit vectors M andM′ with associ-
ated structure tensorsM ⊗ M andM′ ⊗ M′. The strain-energy function now depends
on C, M ⊗ M and M′ ⊗ M′, and we write W (C,M ⊗ M,M′ ⊗ M′). Similarly to
the transversely isotropic model, W is an isotropic function of its three arguments,
i.e., it must satisfy

W (Q′CQ′T,Q′M ⊗ Q′M,Q′M′ ⊗ Q′M′) = W (C,M ⊗ M,M′ ⊗ M′) (63)

for arbitrary orthogonal Q′ and for any right Cauchy–Green tensor C.
This means that W can be expressed in terms of invariants of the three tensors and

their combinations. For an unconstrained material this requires eight independent
invariants. These are the invariants I1, . . . , I5 associated with C and M ⊗ M, but
additionally the invariants combining C and M′ ⊗ M′, denoted I6, I7, analogously
to I4, I5, and defined by

I6 = M′ · (CM′), I7 = M′ · (C2M′). (64)

Finally, there is the invariant [M · (CM′)]M · M′ that involves all three tensors when
M · M′ 	= 0. However, it is more convenient in the analysis to useM · (CM′) without
the geometric factor, and we denote this by I8. Thus,

I8 = M · (CM′), (65)

which is not strictly invariant since it changes sign if either M or M′ is reversed. An
alternative, which is invariant, is to use I 2

8 rather than I8 itself, and in any case the
strain-energy function should depend on I8 through I 2

8 . In fact, for the special case
in which M · M′ = 0, I 2

8 is not needed since it depends on the other invariants and
is given by (Merodio and Ogden 2006)

I 2
8 = I2 + I5 + I7 + I4 I6 − I1(I4 + I6). (66)

To form expressions for the stress tensors we require the derivatives of I6, I7 and
I8 with respect to F in addition to those given in (47) and (55) for I1, . . . , I5. These
are

∂ I6
∂F

= 2M′ ⊗ FM′,
∂ I7
∂F

= 2(M′ ⊗ BFM′ + CM′ ⊗ FM′), (67)

and
∂ I8
∂F

= M ⊗ FM′ + M′ ⊗ FM. (68)

These enable the Cauchy stress tensor σ for an unconstrained material to be given
via
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Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m)

+ 2W6m
′ ⊗ m′ + 2W7(m′ ⊗ Bm′ + Bm′ ⊗ m′) + W8(m ⊗ m′ + m′ ⊗ m), (69)

where m = FM and m′ = FM′ and the notation Wi = ∂W/∂ Ii now applies for
i = 1, . . . , 8.

For an incompressible material the list of invariants reduces by one to I1, I2, I4,
. . . , I8 and the Cauchy stress is given by

σ = 2W1B + 2W2(I1B − B2) − pI + 2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m)

+ 2W6m′ ⊗ m′ + 2W7(m′ ⊗ Bm′ + Bm′ ⊗ m′) + W8(m ⊗ m′ + m′ ⊗ m),

(70)

the notation Wi = ∂W/∂ Ii now applying for i = 1, 2, 4, . . . , 8.
In general, the material response associated with two preferred directions is not

orthotropic, orthotropy being characterized locally by the existence of three mutually
orthogonal planes of symmetry in the reference configuration of the material. There
are two situations in which the response is orthotropic. The first situation arises in
the special case in which the two directions are orthogonal and the second for which
the preferred directions are mechanically equivalent (Spencer 1972).

In the second case, for example, the material properties are unaffected by inter-
change of M and M′, which implies that

W (I1, I2, I3, I4, I5, I6, I7, I8) = W (I1, I2, I3, I6, I7, I4, I5, I8). (71)

Plane Strain

As for the case of transverse isotropy, the number of independent invariants is reduced
for plane strain, and we have the connections given in (58) together with

I7 = (I1 − 1)I6 − I3, I 2
8 = I4 I6 − I3|M × M′|2, (72)

and there are only four independent invariants, such as I1, I3, I4, I6. In the incom-
pressible case we summarize the connections between the invariants as

I2 = I1, I5 = (I1 − 1)I4 − 1, I7 = (I1 − 1)I6 − 1, I 2
8 = I4 I6 − |M × M′|2,

(73)
and the strain-energy function depends on just three invariants: W → Ŵ (I1, I4, I6),
and the (planar) Cauchy stress has the form

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m + 2Ŵ6m′ ⊗ m′ − p̂Î, (74)

which generalizes the formula (60). Note that when M · M′ = 0, I 2
8 = I4 I6 − 1,

which is a special case of the three-dimensional formula (66).
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3.4.2 Invariant Formulation with Residual Stress

We now consider the residual stress τ within the invariant framework of Sect. 3.4.
First, we note that since τ is symmetric it can be written in spectral form as

τ =
3∑

i=1

τi Mi ⊗ Mi , (75)

where τi , i = 1, 2, 3, are its eigenvalues and Mi , i = 1, 2, 3, are the corresponding
eigenvectors. Each Mi ⊗ Mi , i = 1, 2, 3, can be considered as a structure tensor,
although they are not all independent since they satisfy

3∑

i=1

Mi ⊗ Mi = Ir. (76)

Thus, τ can be thought of as a generalized structure tensor, and we shall consider
the combined invariants of the two tensors C and τ , and without any other structure
in the material. Thus, generalizing the condition (53), the strain-energy function of
a residually stressed material must satisfy

W (Q′CQ′T,Q′τQ′T) = W (C, τ ) (77)

for all orthogonal Q′. Note that we are using the notation W for the strain-energy
function irrespective of its arguments.

Since Div τ = 0 in Br and τN = 0 on ∂Br it is easy to show that τ cannot
be purely isotropic (i.e., a hydrostatic stress); for a proof, see, for example, Ogden
(2003b). Thus, the response of a residually stressed material relative to Br is neces-
sarily anisotropic and the effect of τ on the response is similar to, but more complex
than, that of a single preferred direction. In particular, the condition (77) implies that
W can be expressed in terms of invariants, in fact only 10 independent invariants
in general, as discussed in Shams et al. (2011) and more generally, for a residually
stressed transversely isotropic elastic material with 18 invariants, as derived by Hoger
(1993) and used in the context of wave propagation by Ogden and Singh (2011).

Here we adopt the notation K1, K2, K3 for the isotropic invariants, i.e.,

K1 = trC, K2 = 1

2
[(trC)2 − tr (C2)], K3 = det C (78)

instead of I1, I2, I3 so as avoid a conflict with the notations for the remaining invari-
ants with the notations I4, I5, . . . for the other invariants considered heretofore. The
three invariants of τ , since they do not depend on C, are collected conveniently as

K4 ≡
{

tr τ ,
1

2
[(tr τ )2 − tr (τ 2)], det τ

}
, (79)
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and the set of independent invariants involving the combination of C and τ is taken
to be

K5 = tr (τC), K6 = tr (τC2), K7 = tr (τ 2C), K8 = tr (τ 2C2). (80)

For a residually stressed material we therefore consider the strain-energy function
W = W (K1, K2, K3, K4, K5, K6, K7, K8), K4 consisting of three separate invari-
ants in general.

For an incompressible material, since K3 = 1, nine independent invariants are
required in general. For the specialization to plane strain with a planar residual stress
the number of independent invariants is reduced, as was illustrated, for example, in
Sect. 3.4.1 for two preferred directions. We refer to Merodio et al. (2013) for details.

Note that when evaluated in the reference configuration Br the invariants that
depend on C reduce to

K1 = K2 = 3, K3 = 1, K5 = K6 = tr τ , K7 = K8 = tr (τ 2). (81)

Stress Tensors

With the considered set of invariants the expanded expressions for the stress tensors
given in (61) become

S =
∑

i ∈I

Wi
∂Ki

∂F
, σ = J−1FS, (82)

for an unconstrained material, where I is the index set {1, 2, 3, 5, 6, 7, 8}, while for
an incompressible material (62) reads

S =
∑

i ∈I

Wi
∂Ki

∂F
− pF−1, σ = FS, (83)

in which case the index set reduces to {1, 2, 5, 6, 7, 8}. Note that the derivative of K4

with respect to F vanishes and so is not included in the above expressions, although
K4 is included in the arguments of W . We emphasize here that in this section Wi

stands for ∂W/∂Ki as distinct from ∂W/∂ Ii used earlier. At this point we do not
include both residual stress and structure associated with preferred directions.

In addition to the expressions ∂Ki/∂F given by (47) for i = 1, 2, 3 with Ii replaced
by Ki , we require the corresponding expressions for i = 5, 6, 7, 8. Similarly to the
derivatives of I4 and I5 in (55), these are easily obtained as

∂K5

∂F
= 2τFT,

∂K6

∂F
= 2(τCFT + CτFT), (84)

∂K7

∂F
= 2τ 2FT,

∂K8

∂F
= 2(τ 2CFT + Cτ 2FT). (85)
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Using these in (82) we obtain the expanded Cauchy stress via

Jσ = 2W1B + 2W2(I1B − B2) + 2I3W3I + 2W5� + 2W6(�B + B�)

+ 2W7�B−1� + 2W8(�B−1�B + B�B−1�), (86)

where we have introduced the notation � = FτFT. This is the Eulerian counterpart
of the Lagrangian residual stress tensor τ and represents the push forward of τ from
Br to B.

For an incompressible material we obtain similarly, from (83),

σ = 2W1B + 2W2(I1B − B2) + 2W5� + 2W6(�B + B�)

+ 2W7�B−1� + 2W8(�B−1�B + B�B−1�) − pI. (87)

When evaluated in Br Eqs. (86) and (87) reduce to

τ = 2(W1 + 2W2 + W3)Ir + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ
2 (88)

and
τ = (2W1 + 4W2 − p(r))Ir + 2(W5 + 2W6)τ + 2(W7 + 2W8)τ

2, (89)

respectively, wherein each Wi , i ∈ I , is evaluated for the invariants given in Br

by (81). These are the specializations of the general formulas in (39) to the present
circumstances.

From (88) and (89) we deduce that in Br the conditions

W1 + 2W2 + W3 = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0 (90)

and
2W1 + 4W2 − p(r) = 0, 2(W5 + 2W6) = 1, W7 + 2W8 = 0, (91)

must hold for an unconstrained and incompressible material, respectively, as derived
by Shams et al. (2011).

Plane Strain

In the plane strain specialization, for example, in the (1, 2) plane with the residual
stress having only the in-plane components τ11, τ22, τ12 and C having nonzero com-
ponents C11,C22,C12,C33 = 1, considerable simplification is achieved and only the
invariants K1, K3, K4, K5 remain independent. They are given by

K1 = C11 + C22 + 1, K3 = C11C22 − C2
12, K4 = {τ11 + τ22, τ11τ22 − τ2

12, 0}, (92)

K5 = C11τ11 + C22τ22 + 2C12τ12, (93)
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and in terms of these the other invariants are given by

K2 = K1 + K3 − 1, K6 = (K1 − 1)K5 − K3(τ11 + τ22), (94)

K7 = (τ11 + τ22)K5 − (K1 − 1)(τ11τ22 − τ 2
12), (95)

K8 = (K1 − 1)K7 − K3[(τ11 + τ22)
2 − 2(τ11τ22 − τ 2

12)]. (96)

Similarly to the plane strain cases considered in Sects. 3.3.2 and 3.4.1 the planar
Cauchy stress σ̂ is given in a simple form via

J σ̂ = 2Ŵ1B̂ + 2K3Ŵ3Î + 2Ŵ5�̂, (97)

where Ŵ (K1, K3, K4, K5) is obtained from W (K1, K2, K3, K4, K5, K6, K7, K8)

with the specializations (92)–(96) and, as before, the hats refer to the plane spe-
cialization. For an incompressible material the details were given by Merodio et al.
(2013) and in the above the invariants specialize with K3 = 1, Ŵ depends on just
K1, K4, K5, and the plane Cauchy stress has the form

σ̂ = 2Ŵ1B̂ + 2Ŵ5�̂ − p̂Î. (98)

The latter formulation has been used in Merodio et al. (2013) in the analysis of the
azimuthal shear deformation of a residually stressed circular cylindrical tube.

4 The Role of Homogeneous Deformations

For the experimental determination of the elastic properties of soft biological tissues
homogeneous deformations play a key role. Theoretically they are exact deformations
for which the deformation gradient F is independent of position X, but experimen-
tally a uniformF is only achievable approximately. Provided the tissue specimens are
selected appropriately and the experiments are carefully conducted then the approx-
imation can be considered sufficiently good to allow certain tissue properties to be
elicited. In this connection homogeneous deformations have been discussed exten-
sively for isotropic, transversely isotropic and orthotropic fiber-reinforced materi-
als in the literature, and we refer to, for example, Ogden (2003b, 2009, 2015) and
Holzapfel and Ogden (2009c) and references therein for details.

Rather than repeating full details here, we shall consider only the case of the
homogeneous biaxial deformation of a thin rectangular sheet of material loaded in
tension in the plane of the sheet. The sheet is assumed to contain two preferred direc-
tions that represent two families of parallel fibers, the two families being disposed
symmetrically to the axes of biaxial tension, which are parallel to the sheet edges.
This deformation is an example of a so-called pure homogeneous strain, which is
defined in terms of rectangular Cartesian coordinates (X1, X2, X3) and (x1, x2, x3)

in the reference and deformed configurations, respectively, by
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x1 = λ1X1, x2 = λ2X2, x3 = λ3X3, (99)

where the principal stretches λ1, λ2, λ3 are constants, i.e., independent of
(X1, X2, X3).

With respect to these coordinates F and C have diagonal forms diag[λ1, λ2, λ3]
and diag[λ2

1, λ
2
2, λ

2
3], respectively, and for an incompressible material the constraint

(16) must be satisfied. For convenience of reference in this section we repeat this
here:

λ1λ2λ3 = 1. (100)

Note that for a homogeneous deformation there can be no residual stress.

4.1 Application to Fiber-Reinforced Materials

We now suppose that the preferred directions in the reference configuration, denoted
M and M′, are given by

M = cos ϕ e1 + sin ϕ e2, M′ = cos ϕ e1 − sin ϕ e2, (101)

where ϕ is a constant angle, as depicted in Fig. 8, and e1, e2 denote the in-plane
Cartesian coordinate directions. The directions M and M′ deform into the vectors m
and m′, which are given by

m = λ1 cos ϕ e1 + λ2 sin ϕ e2, m′ = λ1 cos ϕ e1 − λ2 sin ϕ e2. (102)

In terms of the principal stretches the invariants defined in (45), or (14), (54), (64)
and (65) are, for an incompressible material,

I1 = λ2
1 + λ2

2 + λ−2
1 λ−2

2 , I2 = λ−2
1 + λ−2

2 + λ2
1λ

2
2, (103)

where (100) has been used to replace λ3 in terms of λ1 and λ2,

I4 = I6 = λ2
1 cos2 ϕ + λ2

2 sin2 ϕ, I5 = I7 = λ4
1 cos2 ϕ + λ4

2 sin2 ϕ, (104)

and
I8 = λ2

1 cos2 ϕ − λ2
2 sin2 ϕ. (105)

In this situation, on applying the general formula (70) for the Cauchy stress tensor
σ , it can be seen that the components σ13 and σ23 are zero and the other components
are given by
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(a)

(b)

M

M

m

m

φ
φ

Fig. 8 Pure homogeneous strain of a thin sheet of material in the (1, 2) plane with two in-plane
symmetrically disposed families of fibers with directions M and M′ in the reference configuration
(a), and m and m′ in the deformed configuration (b)

σ11 = 2W1λ
2
1 + 2W2(I1λ

2
1 − λ4

1) + 2(W4 + W6 + W8)λ
2
1 cos2 ϕ

+ 4(W5 + W7)λ
4
1 cos2 ϕ − p, (106)

σ22 = 2W1λ
2
2 + 2W2(I1λ

2
2 − λ4

2) + 2(W4 + W6 − W8)λ
2
2 sin2 ϕ

+ 4(W5 + W7)λ
4
2 sin2 ϕ − p, (107)

σ12 = 2[W4 − W6 + (W5 − W7)(λ
2
1 + λ2

2)]λ1λ2 sin ϕ cos ϕ, (108)

σ33 = 2W1λ
2
3 + 2W2(I1λ

2
3 − λ4

3) − p. (109)

Clearly, the invariants in this case depend on just the two independent stretches
λ1 and λ2 and the angle ϕ and it is therefore convenient to reduce the dependence of
W on the seven invariants to dependence on these three quantities by means of the
notation W̃ (λ1, λ2, ϕ), which is defined by

W̃ (λ1, λ2, ϕ) = W (I1, I2, I4, I5, I6, I7, I8), (110)

where I1, I2, I4, . . . , I8 are given by (103)–(105). Note that ϕ is a material property,
not a deformation variable. For an isotropic material W depends on I1 and I2 only
and in this case W̃ is symmetric in λ1 and λ2, but otherwise W̃ is not symmetric
except in the particular case ϕ = π/4. It is then easy to obtain the simple formulas

σ11 − σ33 = λ1
∂W̃

∂λ1
, σ22 − σ33 = λ2

∂W̃

∂λ2
. (111)
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There is no corresponding simple formula for σ12, which is not in general zero
and hence, unlike σ33, the normal stresses σ11 and σ22 are not in general principal
stresses. However, there are particular circumstances in which they are principal
stresses. First, if ϕ = 0 or π/2 the two preferred directions coincide and the material
is transversely isotropic; second, if the two families of fibers have the same elastic
properties and then, for the specific deformation considered here, since I4 = I6 and
I5 = I7, W4 = W6 and W5 = W7 and σ12 = 0. In this second case the material is
orthotropic, as indicated in Sect. 3.4.1, and the axes of orthotropy coincide with the
Cartesian axes.

We emphasize at this point that, except in the case of incompressible isotropic
materials, biaxial tests provide only limited information about tissue elastic proper-
ties, but they are nevertheless very useful since experimental setups in which more
than two deformation components can be varied independently and the associated
stress components measured are rare. Indeed, for an incompressible material there
are seven constitutive functions W1,W2,W4, . . . ,W8 that are required to be known
in order to fully characterize material properties and at present it is not possible
experimentally to distinguish the effects on the material behavior of all the different
invariants and constitutive functions. As a result it is usual to specialize the depen-
dence of the strain-energy function to a limited number of invariants that are able to
capture the essence of the elastic behavior of tissues.

For the latter purpose strain-energy functions restricted to the invariants I1, I4 and
I6 are often considered and typically these have the general form

W (I1, I4, I6) = Wiso(I1) + Waniso(I4, I6), (112)

more particularly with the symmetry Waniso(I4, I6) = Waniso(I6, I4), reflecting the
fact that the two families of fibers have the same elastic properties. This decouples the
isotropic part Wiso, which models the matrix, from the contributions of the collagen
fibers embedded in the matrix and modeled by the anisotropic partWaniso. A particular
strain-energy function of this form has a neo-Hookean isotropic part

Wiso(I1) = 1

2
μ(I1 − 3), (113)

where μ (>0) is the shear modulus of the matrix in its reference configuration, and
Fung-type exponentials associated with the fiber elasticity, namely

Waniso(I4, I6) = k1

2k2
{exp[k2(I4 − 1)2] + exp[k2(I6 − 1)2] − 2}, (114)

where k1 (with the dimension of stress) and k2 (dimensionless) are material constants.
In this case σ12 = 0 and the other stress components are given by

σ11 = μλ2
1 + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

1 cos2 ϕ − p, (115)

σ22 = μλ2
2 + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

2 sin2 ϕ − p, (116)
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and σ33 = μλ2
3 − p. On setting σ33 = 0 and eliminating p and λ3, we then obtain

σ11 = μ(λ2
1 − λ−2

1 λ−2
2 ) + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

1 cos2 ϕ, (117)

σ22 = μ(λ2
2 − λ−2

1 λ−2
2 ) + 4k1(I4 − 1) exp[k2(I4 − 1)2]λ2

2 sin2 ϕ, (118)

equations for the in-plane stress components σ11 and σ22 in terms of the independent
stretches λ1 and λ2, I4 being given by Eq. (104)1.

To illustrate these formulas and, in particular, their dependence on the fiber angle
we plot the dimensionless stress components σ 11 = σ11/μ and σ 22 = σ22/μ as func-
tions of λ1 for a fixed value of λ2 in Figs. 9 and 10, respectively. Results are shown
for the representative values λ2 = 1 with k̄1 = k1/μ = 1 and k2 = 1. Clearly, as is
apparent from Fig. 9, the response becomes stiffer as the fiber become closer to the
direction of the applied tension σ11.

Fig. 9 Plot of the
dimensionless stress
σ 11 = σ11/μ against λ1
based on Eq. (117) for
λ2 = 1, dimensionless
parameter values
k̄1 = k1/μ = 1 and k2 = 1
and the indicated values of
the fiber angle ϕ together
with the unmarked curve for
ϕ = π/2 (which has the
softest response)
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Fig. 10 Plot of the
dimensionless stress
σ 22 = σ22/μ against λ1
based on Eq. (118) for
λ2 = 1, dimensionless
parameter values
k̄1 = k1/μ = 1 and k2 = 1
and the indicated values of
the fiber angle ϕ
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In Fig. 10 the behavior of the lateral stress is illustrated, also as a function of the
active stretch λ1. These show a similar stiffening trend to that in Fig. 9 although there
is some overlap of the curves for different values of ϕ. The curves for ϕ = 0 and
ϕ = π/2 are identical since the anisotropic term vanishes, with ϕ = 0 and I4 = 1,
respectively, because we have chosen λ2 = 1.

5 Extension and Inflation of an Artery

We now consider the elastic deformation of an artery, which is modeled as a thick-
walled circular cylindrical tube. In particular, we restrict attention to the extension
and inflation of an artery in which there are two symmetrically and helically arranged
families of fibers with the two families having the same elastic properties. We obtain
general expressions for the pressure and axial load on the artery in terms of the radial
and axial stretches. As a special case, and as a first approximation, we examine the
specialization of the results to a thin-walled (or membrane) tube. A membrane does
not support residual stresses and in order to consider the effect of residual stresses
on the elastic behavior of the tube we then return to consideration of the thick-walled
model.

5.1 Geometry and Deformation

We consider first a thick-walled circular cylindrical tube with reference geometry
defined in cylindrical polar coordinates R,Θ, Z by

0 < A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L , (119)

where A and B > A are the inner and outer radii of the tube and L is its length. We
consider that the unit tangents to the two families of continuously distributed fibers
are given by

M = cos ϕ EΘ + sin ϕ EZ , M′ = cos ϕ EΘ − sin ϕ EZ , (120)

locally with respect to unit basis vectors EΘ and EZ , as shown in Fig. 11, and sym-
metric with respect to the tube axis. In general we may take ϕ to depend on R, but
in order to maintain radial symmetry we assume that it is independent of Θ and Z .

A particular significance of the prior consideration of the biaxial deformation in
Sect. 4 is that locally (at each radius R) the deformation of the tube is biaxial and
several of the formulas in Sect. 4.1 carry over to the present situation. Indeed, if the
plane sheet shown in Fig. 8a is folded to form a cylinder then the straight lines (fiber
directions) in the sheet become helices in the thin-walled cylinder so formed. The
difference is that here the tube has a finite thickness and there is dependence on R.
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Fig. 11 Unit vectors M and
M′ lying in the (Θ, Z) plane
at radial distance R from the
tube axis in the reference
configuration and locally
tangent to the two helically
arranged families of fibers

EΘ
MM

EZφ φ

It is generally considered that the material of artery walls is incompressible, and
we therefore adopt the incompressibility assumption. Then, subject to the circular
cylindrical shape being maintained during deformation (which requires the applica-
tion of an appropriate internal pressure and axial load), the deformation of the tube
can be described by the equations

r2 = a2 + λ−1
z (R2 − A2), θ = Θ, z = λz Z , (121)

where r, θ, z are cylindrical polar coordinates in the deformed configuration, λz is
the constant (independent of R) axial stretch of the tube and a is its internal radius
in the deformed configuration. The external deformed radius, denoted b, is given by

b2 = a2 + λ−1
z (B2 − A2). (122)

An advantage of the deformation defined in (121) is that, as is the case for homo-
geneous biaxial deformation, the principal axes of deformation do not rotate, which
means that the radial, azimuthal, and axial directions are principal directions of the
deformation. We denote by λr , λθ , λz the corresponding principal stretches, the first
two of which are given by

λr = λ−1λ−1
z , λθ = r

R
, (123)

λr having been obtained from the incompressibility constraint, written here as

λrλθλz = 1. (124)

We now adopt the notations

λa = a/A, λb = b/B (125)

for the values of λθ at r = a and r = b, respectively, and we note that by expressing
(121)1 in terms of λθ we obtain
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λ2
aλz − 1 = R2

A2
(λ2

θλz − 1) = B2

A2
(λ2

bλz − 1). (126)

One implication of these connections is that the sign of λ2
θλz − 1 is independent of

R, and, in particular, if λ2
θλz − 1 = 0 at one radius then this holds for all R ∈ [A, B],

so that λθ is independent of R and the deformation is homogeneous.

5.2 Stresses and Loads

Circular symmetry is maintained during the considered deformation, and because
the two fiber families are symmetrically disposed and have the same elastic prop-
erties the (Cauchy) stresses required to maintain the deformation are the normal
stresses in the r, θ, z directions, which we denote by σrr , σθθ and σzz . These are prin-
cipal stresses, similarly to the situation for the homogeneous biaxial deformation
discussed in Sect. 4.1. This means that the elastic response is orthotropic and the
axes of orthotropy coincide with the cylindrical polar axes locally. For each radius
R the considered deformation has the form of a pure homogeneous strain and hence
the strain-energy function can be written as W̃ (λθ , λz, ϕ), as in (110), except that λ1

and λ2 are replaced by λθ and λz , respectively.
Thus, similarly to (111), the principal stress differences take the forms

σθθ − σrr = λθ

∂W̃

∂λθ

, σzz − σrr = λz
∂W̃

∂λz
, (127)

with the indices 1, 2, 3 corresponding to θ, z, r , respectively, and we emphasize that
in general W̃ (λθ , λz, ϕ) 	= W̃ (λz, λθ , ϕ).

The required invariants are

I1 = λ2
θ + λ2

z + λ−2
θ λ−2

z , I2 = λ−2
θ + λ−2

z + λ2
θλ

2
z , (128)

I4 = I6 = λ2
θ cos2 ϕ + λ2

z sin2 ϕ, I5 = I7 = λ4
θ cos2 ϕ + λ4

z sin2 ϕ, (129)

I8 = λ2
θ cos2 ϕ − λ2

z sin2 ϕ, (130)

which, with the identifications λ1 ↔ λθ and λ2 ↔ λz , can be seen to be the same as
(103)–(105). In general, λθ depends on R so all the invariants also depend on R, as
do the stress components σrr , σθθ and σzz .

We now apply the equilibrium equation (20) with body force b = 0, which, by
virtue of the radial symmetry (no dependence on θ or z), reduces to the radial equation

dσrr

dr
+ 1

r
(σrr − σθθ ) = 0. (131)
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Integration of this equation requires boundary conditions on the interior and exterior
boundaries r = a and r = b, and we assume that there is an internal pressure P (≥ 0)

on r = a but no traction on r = b. Thus, we set

σrr =
{−P on r = a

0 on r = b.
(132)

In order to maintain the deformation axial loads on the ends of the tube are needed
in addition to the pressure P on r = a. At any cross section of the tube the resultant
axial load, which is independent of z, is denoted N and given by

N = 2π

∫ b

a
σzzrdr. (133)

On integration of (131) and use of (127)1 and the boundary condition (132)2 we
obtain

σrr = −
∫ b

r
λθ

∂W̃

∂λθ

dr

r
, (134)

and then, on application of the boundary condition (132)1, it follows that

P =
∫ b

a
λθ

∂W̃

∂λθ

dr

r
. (135)

For given A and B, noting that from (122) b depends on a and λz , Eq. (135) yields
an expression for the P that is required to achieve the deformed internal radius a for
any given λz .

On use of the expressions in (127) and the equilibrium equation (131) it is straight-
forward to show that N can be recast in the form

N = π

∫ b

a

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
r dr + π

∫ b

a

d

dr
(r2σrr ) dr. (136)

Integration of the latter term and application of the boundary conditions (132) leads
to

N = π

∫ b

a

(
2λz

∂W̃

∂λz
− λθ

∂W̃

∂λθ

)
r dr + πa2P. (137)

Thus, N consists of two parts: the load that is applied on the ends between r = a
and r = b and the contribution πa2P of the pressure on the end area πa2 of a tube
with closed ends. The difference N − πa2P , which is the integral expression here, is
known as the reduced axial load, and for this we adopt the notation F = N − πa2P .
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5.2.1 Inclusion of Residual Stress

If residual stresses are included in the tube then some of the formulas in the previous
section are essentially unchanged, as we now show. An axial residual stress is not
compatible with the tube being circular cylindrical and a deformation independent
of Θ and Z , so we restrict attention to radial and circumferential residual stresses,
which we denote by τRR and τΘΘ . They satisfy the radial equation of equilibrium

dτRR

dR
+ 1

R
(τRR − τΘΘ) = 0, (138)

which is associated with the boundary conditions

τRR = 0 on R = A and B, (139)

these being the specializations of (24) and (25), respectively, to the present geometry.
The invariants I1, I2, I4, I5, I6, I7, I8 are again given by (128)–(130), the invari-

ants K4 in (79) reduce to just τRR + τΘΘ and τRRτΘΘ , and

K5 = λ−2
θ λ−2

z τRR + λ2
θ τΘΘ, K6 = λ−4

θ λ−4
z τRR + λ4

θ τΘΘ, (140)

K7 = λ−2
θ λ−2

z τ 2
RR + λ2

θ τ
2
ΘΘ, K8 = λ−4

θ λ−4
z τ 2

RR + λ4
θ τ

2
ΘΘ. (141)

The strain-energy function can then be written in the form

W̃ (λθ , λz, ϕ, τRR + τΘΘ, τRRτΘΘ), (142)

which is as in Sect. 5.2 except that τRR + τΘΘ and τRRτΘΘ are now included. With
this change accounted for, the formulas for the Cauchy stress differences have exactly
the same form as in (127), and likewise the formulas for P and N are given by (135)
and (137). Only the content of W̃ is different.

5.2.2 The Thin-Walled Approximation

As a first approximation arteries can be considered to be thin-walled tubes, which
can be treated on the basis of membrane theory. Membranes do not support through-
thickness stresses and, in particular, this means that σrr = 0 and there can be no
residual stress. However, the membrane approximation does allow us to obtain (for
general W̃ ) simple expressions for the pressure and axial load that do not involve
integrals. The analysis is as follows. Introduce the small parameter ε = (B − A)/A,
so the reference wall thickness B − A is small compared with the inner radius A,
and linearize (122) in ε to obtain, using the definitions λa = a/A, λb = b/B, the
approximation

λb = λa − ελ−1λ−1
z (λ2λz − 1), (143)
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where, to first order in ε, λ, the membrane azimuthal stretch, can be chosen to be in
[λb, λa].

To the first order in ε, on application of the mean value theorem to Eq. (135) and
use of (143), we obtain an approximation for P , namely

P = ελ−1λ−1
z

∂W̃

∂λ
(λ, λz, ϕ). (144)

Similarly, an approximation for the reduced axial load can be obtained from (137),
which yields

F = επ A2λ−1
z

[
2λz

∂W̃

∂λz
(λ, λz, ϕ) − λ

∂W̃

∂λ
(λ, λz, ϕ)

]
. (145)

Results for P and F in the case of a thick-walled tube will be illustrated in the
following with and without residual stress, and also for the membrane approximation.
In each case the results will be based on model constitutive equations, i.e., on special
choices of W̃ , which we discuss in the following section.

5.3 Constitutive Laws

We now illustrate the preceding theory by considering specific material models.
In Sect. 5.3.1 we consider a strain-energy function for a fibrous material without
residual stress, while in Sect. 5.3.2 we extend this to account for residual stress. This
is followed by an illustration in which residual stresses and fiber reinforcement are
combined.

5.3.1 Fiber Model

The fiber model is of the form (112) with (113) and (114). Thus, W̃ (λθ , λz, ϕ) is
given by

W̃ (λθ , λz, ϕ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2
{exp[k2(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − 1}, (146)

and hence
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λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + 4k1(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
θ cos2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2], (147)

and

λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) + 4k1(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
z sin2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2]. (148)

This is applied first for a membrane tube and then for a thick-walled tube. In
Fig. 12a, with λz = 1, the dimensionless pressure P∗ = P/με is plotted against λ

for the model with four values of the fiber angle ϕ and for representative values
of the material constants. Results for λz > 1 are qualitatively similar to those for
λz = 1 and are not therefore plotted separately. For λz < 1, in the absence of internal
pressure, the tube becomes unstable and this case is not therefore considered here.
Figure 12a illustrates the strong dependence on fiber orientation. In particular, as the
fibers approach the circumferential direction (decreasing ϕ) the pressure required
to reach a given circumferential stretch increases, i.e., the fibers have a stronger
restraining effect on inflation. In Fig. 12b the corresponding plots for a thick-walled
tube are shown for comparison, with η = 1.4 and the same values of the material
constants and for representative fiber angles. Qualitatively, these are very similar,
but, of course, larger pressures are required to achieve the same level of inflation as
for a membrane tube, although the dimensionless pressure is lower because of the
different scaling used. The pressure curves exhibit qualitatively the typical response
of artery walls. Note that the character of the curves in Fig. 12 is very similar to that
evident for σ 11 shown in Fig. 9 for the homogeneous deformation of a sheet.

For the thin-walled tube, the corresponding reduced axial load F is plotted against
λ in Fig. 13a in the dimensionless form F∗ = F/(π A2με), also for λz = 1 and four
values of the fiber angle ϕ. For the larger values of ϕ, i.e., for fibers closer to the axial
direction than the circumferential direction, there is initially, as λ increases from
1 under pressure, a tendency for the pressure to shorten the tube and an increasing
positive (tensile) value of F is required in order to maintain λz = 1. Then, as inflation
continues, F reaches a maximum and then becomes negative, so the trend is reversed
and the tube would elongate in the absence of the axial load. When the fibers are
aligned closer to the circumferential direction, on the other hand, F becomes negative
as soon as inflation begins and then decreases rapidly. Such ‘switching’ in response
has been noted previously, both for isotropic materials (Haughton and Ogden 1979)
and for a Fung-type model (Holzapfel and Gasser 2001). Some corresponding plots
for a thick-walled tube are also shown in Fig. 13b for comparison. These are broadly
similar.

Clearly, the membrane approximation gives a good qualitative picture of the pres-
sure and axial load versus stretch behavior. However, the membrane approximation
cannot account for the through-thickness stress distribution in artery walls and is
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Fig. 12 a Plots of the dimensionless pressure P∗ = P/με versus the azimuthal stretch λ for
the membrane approximate Eq. (144) for the strain-energy function given by (146) with k1/μ =
1, k2 = 1 and ϕ = π/16, π/6, π/4, 3π/10. b Plots of P∗ = P/[μ(η − 1)] versus the stretch λa ,
where η = B/A = 1.4 for a thick-walled tube based on Eq. (135), the same strain-energy function
and material parameters and ϕ = π/6, π/5, π/4, π/3
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Fig. 13 a Plots of the dimensionless reduced axial load F∗ = F/(π A2με) versus the azimuthal
stretch λ based on Eq. (145) with k1/μ = 1, k2 = 1 and the values ϕ = π/3, 3π/10, π/4, π/6. b
Plots of F∗ = (N − πa2P)/[π A2μ(η − 1)] versus λa for the thick-walled case based on Eq. (137)
with η = 1.4 and for the same values of the material constants, and ϕ = π/3, π/4, π/6

not able to support the residual stresses that have an important influence on the
mechanical response of arteries. See, for example, the papers by Holzapfel et al.
(2000), Ogden and Schulze-Bauer (2000) and Ogden (2003b) and references therein
for detailed discussion of these features. In the following, therefore, we consider a
thick-walled tube with residual stress.
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5.3.2 Residual Stress Model

In order to illustrate the influence of residual stress on the material response we now
specialize both the form of the residual stress and the strain-energy function. First,
we choose a simple form of τRR satisfying the boundary conditions (139) and then
use (138) to determine τΘΘ . Specifically, we take

τRR = α(R − A)(R − B), (149)

where α (>0) is a constant, and obtain

τΘΘ = α[3R2 − 2(A + B)R + AB]. (150)

Plots of τRR and τΘΘ are shown in Fig. 14 for α = 1. Since dependence on α is linear,
curves for other values are obtained by appropriate scaling.

The characteristics of τRR and τΘΘ shown in Fig. 14 are very similar to those
obtained for a single layer from the so-called ‘opening angle’ method (Ogden 2003b)
or from the assumption that the circumferential stress at a typical physiological
pressure is uniform (Ogden and Schulze-Bauer 2000).

Recalling the constitutive law of a residually stressed material discussed in
Sect. 3.4.2, we now specialize the strain-energy function to include the influence
of residual stress with dependence only on the invariants K1, K4 and K5 and without
dependence on fibers. Then W = W (K1, K4, K5) and from (87) the expression for
the Cauchy stress reduces to

σ = 2W1B + 2W5� − pI, (151)

and the restrictions (91) reduce to

Fig. 14 Residual stresses
τRR (dashed curve) and τΘΘ

(continuous curve) plotted
for α = 1 based on
Eqs. (149) and (150) as
functions of R/A for
B/A = 1.2, a typical value
for artery walls

1.05 1.10 1.15 1.20

-0.2

-0.1

0.1

0.2

R/A

τΘΘ

τRR
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2W1 − p(r) = 0, 2W5 = 1 (152)

in Br. Consistently with (152) we now consider the prototype model strain-energy
function given by

W = 1

2
μ(K1 − 3) + 1

2
(K5 − tr τ ), (153)

so that W = 0 in Br and (152) is satisfied with p(r) = μ, where μ (>0) is a constant.
For the considered problem the strain-energy function (142), on omission of ϕ,

becomes

W̃ (λθ , λz, τRR, τΘΘ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ 1

2
[λ−2

θ λ−2
z τRR + λ2

θ τΘΘ − (τRR + τΘΘ)], (154)

and the stress differences (127) specialize to

σθθ − σrr = λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + λ2

θ τΘΘ − λ−2
θ λ−2

z τRR, (155)

and

σzz − σrr = λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) − λ−2
θ λ−2

z τRR . (156)

The next step is to evaluate the integrals in the expressions for the pressure P and
the reduced axial load F = N − πa2P from the integrals in (135) and (137). This
requires the expressions

λθ

∂W̃

∂λθ

= (μ + αAB)(λ2
θ − λ−2

θ λ−2
z ) − α(A + B)R(2λ2

θ − λ−2
θ λ−2

z )

+ αR2(3λ2
θ − λ−2

θ λ−2
z ), (157)

2λz
∂W̃

∂λz
− λθ

∂W̃

∂λθ

= 2μλ2
z − (μ + αAB)(λ2

θ + λ−2
θ λ−2

z )

+ α(A + B)R(2λ2
θ + λ−2

θ λ−2
z ) − αR2(3λ2

θ + λ−2
θ λ−2

z ),

(158)

which are obtained by substituting for the expressions (149) and (150) into (155)
and (156).
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The integrals are evaluated, with the help of the definition λθ = r/R, using the
radial part (121)1 of the deformation in the form r2 − λ

−1/2
z R2 = c, where the nota-

tion c = a2 − λ−1
z A2 = b2 − λ−1

z B2 has been introduced for brevity. The resulting
expressions for P and F , after some manipulation, are obtained as

P = (μ + αAB)λ−1
z log

(
aB

Ab

)
+ 1

2
μcλ−2

z

B2 − A2

a2b2
+ 2αc log

(
b

a

)

− 3

2
α
√
c(A + B)λ−1/2

z

[
tan−1

(
λ

1/2
z

√
c

A

)
− tan−1

(
λ

1/2
z

√
c

B

)]
(159)

and

F = πμ(B2 − A2)(λz − λ−2
z ) + πc

{
(μ + αAB)λ−1

z log

(
bA

aB

)
− αc log

(
b

a

)

+ α
√
c(A + B)λ−1/2

z

[
tan−1

(
B

λ
1/2
z

√
c

)
− tan−1

(
A

λ
1/2
z

√
c

)]}
. (160)

In the case λz = 1 these formulas were given in Ogden (2015).
For numerical purposes we now nondimensionalize all the quantities in the above

two equations but restricted to the case λz = 1.
First, we set P∗ = P/μ and F∗ = F/(π A2μ), which are different from the nondi-

mensionalizations used for the membrane model in Sect. 5.2.2. We also introduce
the notations

η = B

A
, α∗ = αA2

μ
, (161)

and, as a measure of the radial inflation,

e =
√
c

A
≡

√
λ2
a − 1. (162)

The connections
b2

a2
= η2 + e2

1 + e2
, λ2

b = 1 + η−2e2 (163)

then follow and hence P∗ and F∗ can be written

P∗ = 1

2
(1 + α∗η) log

[
(1 + e2)η2

η2 + e2

]
+ α∗e2 log

(
η2 + e2

1 + e2

)

+ 1

2

(η2 − 1)e2

(η2 + e2)(1 + e2)
− 3

2
α∗(1 + η)e tan−1

[
(η − 1)e

η + e2

]
, (164)
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Fig. 15 Plots of P∗ = P/μ versus λa based on Eq. (164) for a α∗ = 2 and b α∗ = 10 with η =
1.3, 1.6 in each case (continuous curves)—thin for η = 1.3 and thick for η = 1.6. Also shown are
the corresponding curves without residual stress (α∗ = 0—dashed for η = 1.3, thick dashed for
η = 1.6)

F∗ = −1

2
(1 + α∗η)e2 log

[
(1 + e2)η2

η2 + e2

]
− 1

2
α∗e4 log

(
η2 + e2

1 + e2

)

+ α∗(1 + η)e3 tan−1

[
(η − 1)e

η + e2

]
. (165)

Illustrative plots of P∗ versus λa are shown in Fig. 15a, b for a residual stress with
α∗ = 2 and α∗ = 10, respectively, and compared with corresponding plots without
residual stress. In each case we choose η = 1.3 and η = 1.6. For thin-walled tubes
with η between 1 and about 1.2 the effect of residual stress is small. For larger values
of η and α∗ it becomes more significant. Note that for larger α∗ and/or larger values
of η the negative value of the final term in (164) becomes significant and causes
a reduction in the pressure. In particular, by comparing Fig. 15a, b we see that the
pressure is larger for η = 1.6 than for η = 1.3 in Fig. 15a but the reverse is true in
Fig. 15b. The effect of residual stress is to reduce the pressure required to achieve a
given level of inflation compared with the case without residual stress. Moreover, if
the residual stress has a very large magnitude the pressure becomes negative, which
is unrealistic. Note: there is a typo in the sign of the final term in the corresponding
expressions for P and P∗ in Ogden (2015).

Plots of F∗ are illustrated in Fig. 16a, b for α∗ = 2 and α∗ = 10, respectively,
and compared with corresponding results without residual stress. The character of
F∗ changes because of the competing effects of the positive and negative terms in
(165). As Fig. 16a shows, for α∗ = 2, F∗ is negative for the considered values of η

and increases in magnitude as η increases (only curves for η = 1.3 and η = 1.6 are
shown). In this case F∗ is slightly less negative than in the absence of residual stress.
The tube has a tendency to elongate under pressure. But for larger α∗, F∗ turns from
negative to positive for the thicker walled tubes, exemplified by η = 2 in Fig. 16b, in
which case the tube has a tendency to shorten under pressure.
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Fig. 16 Plots of F∗ = F/(π A2μ) versus λa based on Eq. (165) for a α∗ = 2 with η = 1.3, 1.6
(continuous curves)—thin for η = 1.3 and thick for η = 1.6, and b α∗ = 10, with η = 1.3, 2 (con-
tinuous curves)—thin for η = 1.3 and thick for η = 2. Also shown are the corresponding curves
without residual stress α∗ = 0: a dashed for η = 1.3, thick dashed for η = 1.6; b dashed for
η = 1.3, thick dashed for η = 2

With both fibers and residual stress included in the strain-energy function we
combine (146) and (154) to obtain

W̃ (λθ , λz, ϕ, τRR, τΘΘ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2
{exp[k2(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − 1}

+ 1

2
[λ−2

θ λ−2
z τRR + λ2

θ τΘΘ − (τRR + τΘΘ)], (166)

and the associated

λθ

∂W̃

∂λθ

= μ(λ2
θ − λ−2

θ λ−2
z ) + 4k1(λ

2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
θ cos2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] + λ2
θ τΘΘ − λ−2

θ λ−2
z τRR, (167)

λz
∂W̃

∂λz
= μ(λ2

z − λ−2
θ λ−2

z ) + 4k1(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)λ2
z sin2 ϕ

× exp[k2(λ
2
θ cos2 ϕ + λ2

z sin2 ϕ − 1)2] − λ−2
θ λ−2

z τRR . (168)

Based on the general formulas (135) and (137) we now exemplify the characters
of P∗ and F∗. First, in Fig. 17, P∗ = P/[μ(η − 1)] is plotted for the representa-
tive parameter values α∗ = 2, η = 1.4, k1/μ = k2 = 1, and for four values of ϕ, as
indicated in the figure caption. For comparison, curves are also shown for α∗ = 0
(no residual stress) in order to illustrate the effect of residual stress. The residual
stress has a significant effect on P∗ only for fiber directions relatively close to the
axial direction, as illustrated for ϕ = π/3 in Fig. 17a, in which case the presence
of residual stress requires a significantly larger value of P∗ to achieve a given level
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Fig. 17 Plots of P∗ = P/[μ(η − 1)] versus λa based on (135) with (167) and parameters α∗ = 2,
η = 1.4, k1/μ = k2 = 1 for a ϕ = π/3, b ϕ = π/4, c ϕ = π/5, d ϕ = π/6 (dashed curves), and
corresponding plots for α∗ = 0 (continuous curves)

of inflation than in the absence of residual stress. As the fiber direction approaches
circumferential the residual stress has a smaller and smaller influence. The pattern
is very similar for larger values of α∗ and details are not therefore included here.

In Fig. 18a, b representative plots of F∗ = F/[π A2μ(η − 1)] are shown for the
same parameter values as for P∗. In Fig. 18c and d corresponding plots are shown
for α∗ = 20 in order to illustrate that larger values of α∗ have only a marginal effect
on the character of the curves. In each case the curves are compared with those
obtained in the absence of residual stress. For smaller values of ϕ there is only very
little difference between the curves with and without residual stress, and as for P∗
it is only for fiber directions close to axial that the residual stress has a significant
effect. While the residual stress has the effect of increasing the value of P∗ required
to achieve a given inflation it reduces the magnitude of F∗.
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Fig. 18 Plots of F∗ = F/[π A2μ(η − 1)] versus λa based on (137) with (167) and (168) and
parameters η = 1.4, k1/μ = k2 = 1 for a ϕ = π/3, b ϕ = π/4, with α∗ = 2, and c ϕ = π/3, d
ϕ = π/4, with α∗ = 20 (dashed curves), and corresponding plots for α∗ = 0 (continuous curves)

6 The Effect of Fiber Dispersion

The model discussed in the preceding section assumes that all fibers within a given
family are oriented in the same direction. This is patently not the case for actual
arteries. There is dispersion in the orientations of collagen fibers within each family,
as exemplified by histological data from human coronary and brain arteries obtained
by Canham et al. (1989), Finlay et al. (1995, 1998). In particular, it was found that
there is wider dispersion in the intimal and adventitial layers than in the medial
layer. This is reflected in uniaxial test data obtained for the separate layers of aged
human coronary arteries by Holzapfel et al. (2005). Mean data for such tests on strip
specimens from the circumferential and axial directions of intimal, adventitial and
medial layers are illustrated in Fig. 19. In the media, where the mean fiber direction is
closer to the circumferential direction than the axial direction, the uniaxial response
is stiffest in the circumferential direction, while for the intima and adventitia the
reverse is the case.

The model discussed in Sect. 5.3.1 gives a good representation of the data for the
media (and also for the intact, layer-unseparated artery, which behaves very similarly
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Fig. 19 Plots of the uniaxial Cauchy stress σ (kPa) versus the stretch λ based on mean data for
intimal, medial, and adventitial strips from uniaxial tension experiments on aged human coronary
arteries (Holzapfel et al. 2005). The tests were performed on strips from the circumferential direction
(continuous curves) and axial direction (dashed curves). Based on Holzapfel et al. (2005), Fig. 7,
with permission

to the media), but not of the data for the intima or adventitia. In Gasser et al. (2006)
this difference was attributed to the greater level of dispersion in the latter two layers
and led to the development of a model based on a so-called generalized structure
tensor, which takes account of the dispersion and generalizes the model in Sect. 5.3.1.
This is discussed in the following.

6.1 A Model of Fiber Dispersion in Three Dimensions

Consider a fiber dispersion with a general fiber direction N within the dispersion
referred to spherical polar angles Θ and Φ in the reference configuration, as depicted
in Fig. 20 with respect to rectangular Cartesian basis vectors e1, e2, e3. Thus, we have

N(Θ,Φ) = sin Θ cos Φ e1 + sin Θ sin Φ e2 + cos Θ e3, (169)

where Θ ∈ [0, π ] and Φ ∈ [0, 2π ].
It is assumed that the fiber orientations in the reference configuration are distrib-

uted according to an orientation density function (or probability density function),
which we denote by ρ = ρ(Θ,Φ), and it is also assumed that this is unaffected by
reversal of N, so that ρ(π − Θ,π + Φ) ≡ ρ(Θ,Φ).

The density is normalized according to

raymond.ogden@glasgow.ac.uk



Nonlinear Continuum Mechanics and Modeling the Elasticity of Soft Biological … 129

Fig. 20 Unit vector N
representing the orientation
of a fiber within a dispersion
in the reference configuration
in terms of spherical polar
angles Θ and Φ relative to
background rectangular
Cartesian axes e1, e2, e3

N

Θ

Φ

e1

e2

e3

1

4π

∫

Ω

ρ(Θ,Φ)dΩ = 1, (170)

where Ω is the unit sphere {(Θ,Φ) | Θ ∈ [0, π ], Φ ∈ [0, 2π ]}, and the proportion
of fibers within the solid angle dΩ = sin ΘdΘdΦ is ρ(Θ,Φ)dΩ .

If there is no dispersion and all fibers in a family are aligned in the direction
M then the structure tensor M ⊗ M can be used to construct the invariants I4 and
I5, as in Sect. 3.3.2. This notion of a structure tensor is now generalized to form a
generalized structure tensor, denoted H, which is an average of N ⊗ N weighted by
ρ(Θ,Φ) over the unit sphere, i.e., it is defined by

H = 1

4π

∫

Ω

ρ(Θ,Φ)N ⊗ NdΩ. (171)

Clearly, H is symmetric, and because N is a unit vector it follows from (170) and
(171) that

trH = 1. (172)

Thus, in three dimensions H has five independent components in general, and when
the expression (171) is expanded using (169) the five components of H with respect
to the Cartesian basis e1, e2, e3 are

H11 = 1

4π

∫

Ω

ρ sin3 Θ cos2 ΦdΘdΦ, (173)

H22 = 1

4π

∫

Ω

ρ sin3 Θ sin2 ΦdΘdΦ, (174)

H12 = 1

4π

∫

Ω

ρ sin3 Θ sin Φ cos ΦdΘdΦ, (175)

H23 = 1

4π

∫

Ω

ρ sin2 Θ cos Θ sin ΦdΘdΦ, (176)
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H13 = 1

4π

∫

Ω

ρ sin2 Θ cos Θ cos ΦdΘdΦ, (177)

with Hi j = Hji , i, j ∈ {1, 2, 3}, and from (172) we also have H33 = 1 − H11 − H22.

6.1.1 Fiber Dispersion with Rotational Symmetry

In Gasser et al. (2006) the focus was on the special case in which ρ is independent
of Φ, and we therefore omit the dependence of Φ and write ρ = ρ(Θ). Then, the
fiber dispersion has rotational symmetry about the direction e3, and the normalization
condition (170) reduces to

1

2

∫ π

0
ρ(Θ) sin ΘdΘ = 1. (178)

This dispersion is sometimes referred to as a transversely isotropic dispersion, and
in this case e3 is the mean fiber direction.

Now there is only one independent component of H, and its components can be
written compactly as

H11 = H22 = κ, H33 = 1 − 2κ, Hi j = 0, i 	= j, (179)

where κ , which is a measure of dispersion, is defined by

κ = 1

4

∫ π

0
ρ(Θ) sin3 ΘdΘ. (180)

This allows the tensor H to be represented in the form

H = κIr + (1 − 3κ)M ⊗ M, (181)

where Ir is again the identity tensor in Br and M is a unit vector denoting the mean
fiber direction, which, in terms of the considered Cartesian axes, is M = e3. More
generally, without specifying the axes, (181) represents a rotationally symmetric
distribution about the mean direction M.

In general κ must lie in the interval [0, 1/2]. The limiting value κ = 0 corresponds
to the case where all fibers are aligned and there is no dispersion, in which case
H = M ⊗ M (ρ being a delta function). The intermediate value κ = 1/3 corresponds
to an isotropic fiber dispersion, i.e., the fibers are dispersed uniformly in all directions
in three dimensions, ρ = 1 and H = Ir/3. For the upper limit κ = 1/2 the fiber
dispersion is isotropic in two dimensions in the plane normal to M (and ρ is again a
delta function). We note that in some circumstances values of κ in the range (1/3, 1/2]
lead to unphysical results, as pointed out in Holzapfel and Ogden (2010); see also
Melnik et al. (2015).
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Dispersion Represented as a von Mises Distribution

The fiber dispersion can be measured approximately by imaging histological samples
and represented using a probability density function. In particular, it has been found
reasonable to represent ρ(Θ) by a π -periodic von Mises distribution (Gasser et al.
2006; Holzapfel et al. 2015) based on the exponential function exp[cos(2Θ)]. Here
we write it in the form

ρ(Θ) = 4

√
b

2π

exp(2b cos2 Θ)

erfi(
√

2b)
, (182)

which is symmetrical about Θ = 0 and the constant factor is needed to satisfy the
normalization (178), where erfi is the imaginary error function related to the standard
error function erf by erfi(x) = −i erf(ix), erf being defined by

erf(x) = 2√
π

∫ x

0
exp(−u2)du, (183)

and b is the so-called concentration parameter. Plots of ρ(Θ) versus Θ are shown
in Fig. 21 for several values of b, with larger values of b giving a more concentrated
distribution about Θ = 0, tending to a delta function as b → ∞, in which case there
is no dispersion. For ease of viewing ρ(Θ) is plotted for the range Θ ∈ [−π/2, π/2]
instead of [0, π ].

The integral in (180) can be evaluated explicitly to give κ as a function of b in the
form

κ = 1

2
+ 1

8b
− 1

4

√
2

πb

exp(2b)

erfi(
√

2b)
, (184)

and Fig. 22 provides a plot of this function. This shows, in particular, that κ → 0 as
b → ∞ and the isotropic case corresponds to b = 0 and κ = 1/3.

Fig. 21 Plot of ρ(Θ) versus
Θ for the von Mises
distribution (182) for
b = 2, 5, 8, the dashed,
continuous and thick dashed
curves, respectively
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Fig. 22 Plot of the
dispersion parameter κ as a
function of the concentration
parameter b based on the
formula (184)
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Generalized Invariants

Let us now recall the definition of the invariants I4 and I5 given in (54). These may
equivalently be written as

I4 = tr (CM ⊗ M), I5 = tr (C2M ⊗ M). (185)

These motivate the introduction of generalized invariants, which we denote by I ∗
4

and I ∗
5 , based on the generalized structure tensor H in (181). These are defined by

I ∗
4 = tr (CH), I ∗

5 = tr (C2H), (186)

and from (181) and (45) it follows that

I ∗
4 = κ I1 + (1 − 3κ)I4, I ∗

5 = κ(I 2
1 − 2I2) + (1 − 3κ)I5, (187)

in which we have used the definitions (185) with M now being the mean fiber
direction. Thus, for the considered rotationally symmetric fiber dispersion the gen-
eralized invariants I ∗

4 and I ∗
5 are combinations of isotropic and transversely isotropic

invariants, weighted with respect to the dispersion parameter κ . Implicit in this con-
sideration is that at a given point X in Br the deformation gradient F applies to each
fiber in the dispersion at X.

The generalized invariants do not, of course, capture complete information about
the dispersion. Further information on the structure can be obtained by considering
higher order structure tensors, an example of which is the fourth-order structure
tensor HHH with components given by

Hi jkl = 1

4π

∫ π

0
ρ(Θ)

∫ 2π

0
Ni N j NkNl sin ΘdΘdΦ, (188)

which has complete i, j, k, l symmetry and satisfies (in the summation convention)
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Hi i j j = 1, H11 j j = H22 j j = κ, H33 j j = 1 − 2κ, (189)

and also introduces an additional dispersion parameter, denoted κ1 and defined by

κ1 = 1

4

∫ π

0
ρ(Θ) sin5 ΘdΘ. (190)

The only nonzero components of HHH are

H1111 = H2222 = 3H1122 = 3

4
κ1, H1133 = H2233 = κ − κ1 (191)

and
H3333 = 1 − 4κ + 2κ1. (192)

Clearly, additional generalized invariants based on HHH and involving κ1 can be
constructed; indeed, extension to higher order structure tensors would introduce yet
more dispersion parameters. However, for our purposes it suffices to restrict attention
to H and its associated generalized invariants.

6.1.2 A Strain-Energy Function for a Rotationally
Symmetric Dispersion

In Sect. 3.3.2, for an incompressible material with a single preferred direction M,
we considered the strain-energy function to depend on the invariants I1, I2, I4, I5:
W (I1, I2, I4, I5). In view of the dependence noted in (187) this can be considered to
remain the case when there is a rotationally symmetric fiber dispersion with the pro-
viso concerning higher order generalized structure tensors mentioned above, except
that M in the definitions in (185) is now the mean fiber direction.

Thus, to account for the dispersion in the strain-energy function of an incom-
pressible elastic material with a single rotationally symmetric dispersion it suf-
fices to replace I4 and I5 by I ∗

4 and I ∗
5 , and we write the strain-energy function

as W ∗(I1, I2, I ∗
4 , I ∗

5 ), which depends on κ as well as (I1, I2, I4, I5).
The Cauchy stress is then calculated from (57) with the help of (187) as

σ = 2W ∗
1 B + 2W ∗

2 (I1B − B2) + 2W ∗
4 h + 2W ∗

5 (Bh + hB) − pI, (193)

where W ∗
1 = ∂W ∗/∂ I1, W ∗

2 = ∂W ∗/∂ I2, W ∗
4 = ∂W ∗/∂ I ∗

4 , W ∗
5 = ∂W ∗/∂ I ∗

5 and
h = FHFT, the latter being the push forward of H to B. Thus, compared with
(57) the role of m ⊗ m is taken by h. For a material with two families of dispersed
fibers with mean fiber directions M and M′ additional invariants I6 = M′ · (CM′),
I7 = M′ · (C2M′) and I8 = M · (CM′) can be defined as in (64) and (65) with the
new interpretation of M and M′, and an expression for the Cauchy stress formed,
extending (193).
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However, it is sufficient in what follows to restrict attention to the dependence ofW
on I1, I4, I6 instead of I1, I2, I4, I5, I6, I7, I8 in order to capture the effect of two fiber
families. For this purpose we introduce the notation W ∗(I1, I ∗

4 , I ∗
6 ) = W (I1, I4, I6),

where, analogously to (187),

I ∗
6 = κ ′ I1 + (1 − 3κ ′)I6, (194)

with I ∗
6 = tr (CH′) andH′ = κ ′Ir + (1 − 3κ ′)M′ ⊗ M′, κ ′ being the dispersion para-

meter associated with M′.
The Cauchy stress then has the form

σ = 2W ∗
1 B + 2W ∗

4 h + 2W ∗
6 h

′ − pI, (195)

where h′ = FH′FT.
We now recall the strain-energy function with the structure given by (112) in terms

of I1, I4, I6, i.e.,
W = Wiso(I1) + Waniso(I4, I6), (196)

and extend this to account for fiber dispersion by writing

W ∗ = W ∗
iso(I1) + W ∗

aniso(I
∗
4 , I ∗

6 ), (197)

where W ∗
iso(I1) characterizes the properties of the isotropic matrix in which the fibers

are embedded and W ∗
aniso(I

∗
4 , I ∗

6 ) characterizes the properties of the fiber dispersions.
As in (113) the isotropic part is taken to have the neo-Hookean form

W ∗
iso = 1

2
μ(I1 − 3) (198)

with the shear modulus μ (>0). The anisotropic part of (197) is now

W ∗
aniso = k1

2k2

∑

i=4,6

{exp[k2(I
∗
i − 1)2] − 1}, (199)

which is obtained from (114) by replacing I4 and I6 by I ∗
4 and I ∗

6 , respectively. In
particular, we note that when κ ′ = κ the two families of dispersed fibers have the
same elastic properties. The material constants k1 (>0) and k2 (>0) have the same
interpretation as in (114).

The strain-energy function (197) with (198) and (199) was introduced by Gasser
et al. (2006), and, in particular, we note that the anisotropic contribution (199)
involves the isotropic invariant I1 as well as the anisotropic ones I4 and I6. We
also note that it was assumed in Gasser et al. (2006) that the anisotropic term in I ∗

4
only contributes to the energy and the stress if I4 > 1 and similarly the term in I ∗

6
only contributes to the energy and the stress if I6 > 1, i.e., if the mean fiber direction
is extended in one or other family of fibers. In the case when there is no dispersion
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this is because it is assumed that individual fibers cannot support compression. When
there is dispersion, on the other hand, that the mean fiber direction is extended does
not in general mean that all fibers in a dispersion are extended and those that are
compressed should therefore be omitted from contributing to the energy and stress if
it is again assumed that compressed fibers do not support compression. Whether this
is the case or not is open to debate since closely packed fibers may well support some
compression. Equally, if, for example, I4 ≤ 1 then this does not in general mean that
all fibers in the dispersed family are under compression, so to omit the contribution
of the I ∗

4 term may not then be appropriate. See the discussion in Holzapfel and
Ogden (2015) and Melnik et al. (2015), for example. This is an issue that requires
further investigation.

6.2 Fiber Dispersion in Two Dimensions

In two-dimensional problems such as for plane strain or plane stress it is appropriate
to consider planar dispersions, and toward the analysis of such dispersions we confine
attention to the plane defined by the unit basis vectors e1 and e2. We follow the analysis
in Ogden (2009) and Holzapfel and Ogden (2010) but with different notation. Let
the direction of a general fiber lying in this plane be represented by the unit vector
N in the reference configuration, where

N = cos Θ e1 + sin Θ e2. (200)

Suppose that the fiber dispersion is symmetric about e1, which is then the mean fiber
direction. The orientation density ρ then depends only on Θ and satisfies ρ(−Θ) =
ρ(Θ).

The counterpart of the three-dimensional normalization in the considered two
dimensions is

1

π

∫ π/2

−π/2
ρ(Θ) dΘ = 1, (201)

and the (two-dimensional) generalized structure tensor is defined by

Ĥ = 1

π

∫ π/2

−π/2
ρ(Θ)N ⊗ N dΘ, (202)

where the hat is used to indicate the two-dimensional restriction. The only nonzero
components of Ĥ are Ĥ11 and Ĥ22, which satisfy Ĥ11 + Ĥ22 = 1, where

Ĥ22 = 1

π

∫ π/2

−π/2
ρ(Θ) sin2 Θ dΘ. (203)
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Let us introduce the notation Ĥ22 = κ as a characteristic parameter of the dispersion,
similarly to the three-dimensional situation. Then Ĥ can be expanded in the form

Ĥ = κ Îr + (1 − 2κ)e1 ⊗ e1, (204)

where Îr is the two-dimensional identity in the reference configuration of the con-
sidered plane.

More generally, if M is the mean fiber direction in the plane and the dispersion is
symmetric about M then (204) generalizes slightly to

Ĥ = κ Îr + (1 − 2κ)M ⊗ M. (205)

By way of illustration we now apply this to the case of plane strain for an incom-
pressible material. In respect of a single preferred direction, we recall the plane strain
connections I2 = I1 and I5 = (I1 − 1)I4 − 1 given in (59) and the expression

σ̂ = 2Ŵ1B̂ + 2Ŵ4m ⊗ m − p̂Î (206)

from (60) for the planar Cauchy stress, where Ŵ = Ŵ (I1, I4).
Similarly to the three-dimensional model considered in the preceding section we

accommodate the dispersion by replacing I4 by I ∗
4 = tr (CĤ), which in this case is

given by
I ∗
4 = κ(I1 − 1) + (1 − 2κ)I4, (207)

with Ŵ ∗(I1, I ∗
4 ) = Ŵ (I1, I4). A short calculation then leads to the planar Cauchy

stress
σ̂ = 2Ŵ ∗

1 B̂ + 2Ŵ ∗
4 ĥ − p̂Î, (208)

where ĥ = FĤFT, and, analogously to (195), if there are two fiber families with
mean fiber directions M and M′ in the plane, corresponding generalized invariants
I ∗
4 and I ∗

6 and dispersion parameters κ and κ ′, (208) extends to

σ̂ = 2Ŵ ∗
1 B̂ + 2Ŵ ∗

4 ĥ + 2Ŵ ∗
6 ĥ

′ − p̂Î, (209)

where Ŵ ∗ = Ŵ ∗(I1, I ∗
4 , I ∗

6 ),

ĥ′ = F[κ ′Îr + (1 − 2κ ′)M′ ⊗ M′]FT, (210)

and I ∗
6 = κ ′(I1 − 1) + (1 − 2κ ′)I6.
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6.3 The Influence of Fiber Dispersion on the Response
of an Artery

Again we denote the mean orientations of the two fiber families by M and M′ and
we assume that each dispersion is rotationally symmetric about its mean direction
with the same dispersion parameter κ . We take the mean fiber directions to be sym-
metrically disposed, making equal angles ϕ with the circumferential direction and
to lie in the tangential (Θ, Z) plane locally, as illustrated in Fig. 23. Hence,

M = cos ϕ EΘ + sin ϕ EZ , M′ = − cos ϕ EΘ + sin ϕ EZ . (211)

Note that with respect to Fig. 11 the sense of M′ has been reversed here.
Then, for the deformation described in Sect. 5.1 we again have

I1 = λ2
θ + λ2

z + λ−2
θ λ−2

z , I4 = I6 = λ2
θ cos2 ϕ + λ2

z sin2 ϕ, (212)

and the invariants I ∗
4 and I ∗

6 are

I ∗
4 = I ∗

6 = κ I1 + (1 − 3κ)I4. (213)

We again adopt the strain-energy function (197) with (198) and (199), which, under
the present assumptions, specializes to

W ∗ = 1

2
μ(I1 − 3) + k1

k2
{exp[k2(I

∗
4 − 1)2] − 1}. (214)

In order to illustrate the effect of the fiber dispersion it suffices to consider the
membrane equations for P and F given by (144) and (145), respectively, but now
with the strain-energy function W̃ in (146) replaced by W̃ ∗ obtained from (214) as

Fig. 23 Mean fiber
directions M and M′ locally
in (Θ, Z) planes at radial
location R through the tube
wall, with an indication of
the rotationally symmetric
fiber dispersions about M
and M′

EΘ
M

M

EZ

φ

φ
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Fig. 24 Plot of the
dimensionless pressure
P∗ = P/με against λ for the
strain-energy function (215)
with λz = 1, material
parameters
k1/μ = 1, k2 = 1 and
dispersion parameters
κ = 0.2 (dashed curves) and
κ = 0 (continuous
curves—no dispersion), and
angles ϕ = π/6, π/4, π/3,
based on the thin-wall
approximation (144)
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W̃ ∗(λθ , λz, ϕ, κ) = 1

2
μ(λ2

θ + λ2
z + λ−2

θ λ−2
z − 3)

+ k1

k2

[
exp{k2[κ(λ2

θ + λ2
z + λ−2

θ λ−2
z )

+ (1 − 3κ)(λ2
θ cos2 ϕ + λ2

z sin2 ϕ) − 1]2} − 1
]
. (215)

In Fig. 24 the dimensionless pressure P∗ = P/με is plotted as a function of λ for
the representative axial stretch λz = 1, dispersion parameter κ = 0.2 and material
parameters k1/μ = k2 = 1, with the three different values of the mean fiber angle
ϕ = π/6, π/4, π/3. These are the dashed curves in the figure and are compared with
corresponding results in the absence of dispersion (the continuous curves). The latter
are the same as the curves in Fig. 12a but the vertical scale has been reduced here
in order to highlight the significant difference that dispersion makes to the pressure
response for ϕ = π/6, π/4, in particular for mean fiber directions relatively close to
circumferential.

When the mean fiber direction is closer to axial the effect of dispersion is con-
siderably reduced. For larger values of κ our calculations show that the response
becomes less stiff and as κ approaches 1/3 (the isotropic case) the three dispersion
curves merge. The chosen values of λz , k1/μ and k2 serve to illustrate the main
features of the pressure response in the presence of dispersed fibers, and results for
other values of these parameters are qualitatively similar. Examples with different
parameter values corresponding to fitting to arterial wall data can be found in Gasser
et al. (2006) and Ogden (2009) in which P and/or P∗ is plotted against λ for fixed
λz or for F = 0 and against λz for F = 0.

Next, in Fig. 25, corresponding plots of the dimensionless reduced axial load
F∗ = F/(π A2με) as a function of λ are illustrated for the same parameters as in
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Fig. 25 Plot of the
dimensionless reduced axial
load F∗ = F/(π A2με)

against λ for the
strain-energy function (215)
with λz = 1, material
parameters
k1/μ = 1, k2 = 1 and
dispersion parameters
κ = 0.2 (dashed curves) and
κ = 0 (continuous
curves—no dispersion), and
angles ϕ = π/6, π/4, π/3,
based on the thin-wall
approximation (145)
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Fig. 24. In this case the dispersion has a significant effect for all values of ϕ, and, in
particular, for ϕ = π/3, F∗ changes from positive to negative as a result of dispersion
for the considered range of values of λ.

As a final example in this section we illustrate the influence of fiber dispersion
on circumferential and axial strips subjected to uniaxial tensile load with the ends of
the strips constrained so that the resulting deformations and stress distributions are
nonuniform. Based on data relating to an iliac adventitia, finite element results were
presented in Gasser et al. (2006) for a uniaxial tension of 1 N, with material parameter
μ = 7.64 kPa for the soft (neo-Hookean) matrix and k1 = 996.6 kPa, k2 = 524.6.
Here we show a small selection of their results, for full details of which we refer to
Gasser et al. (2006).

In Fig. 26 we show the distribution of the component of Cauchy stress in the
direction of the applied load for the case of no fiber dispersion (κ = 0) with fibers
oriented at an angle ϕ = 49.98◦ relative to the circumferential direction. Clearly,
the circumferential specimen, shown on the left of the figure, extends more than
the axial specimen because the stiff fibers are oriented closer to the axial than the
circumferential direction. For each specimen there is a significant lateral contraction
in the width of the specimens caused by rotation of the fibers, which tends to squeeze
the material in the width. This is accompanied by an expansion in the thickness
direction in which the stretch is, by incompressibility, λ3 = λ−1

1 λ−1
2 > 1, although

this is less evident near the ends of the specimens because of the end constraints.
Figure 27 shows the corresponding results for a case with fiber dispersion and

dispersion parameter κ = 0.226 and mean fiber angle ϕ = 49.98◦. In this case the
thickness is approximately constant and the uniaxial response is stiffer. Clearly, the
dispersion has a significant effect on the response.
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Fig. 26 Finite element
computation showing the
component of the Cauchy
stress distribution in the
direction of the applied load
for a uniaxial tensile load of
1 N applied to strips in the
circumferential and axial
directions with no fiber
dispersion (κ = 0).
Reproduced from Fig. 9 of
Gasser et al. (2006) with
permission
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6.4 Nonsymmetric Fiber Dispersion

Recent extensive experiments of Schriefl et al. (2012) have characterized the in-
plane (circumferential–axial) dispersion of collagen fibers in the intima, media, and
adventitia of human non-atherosclerotic thoracic and abdominal aortas and common
iliac arteries. They also measured out-of-plane (radial) fiber angles for each layer and
found that the out-of-plane dispersions are similar at all anatomic locations for each
layer. In particular, they determined that for each (three-dimensional) dispersion the
mean fiber angle was very close to tangential, and that the out-of-plane component
was very small. These results show that it is inappropriate to adopt rotationally
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Fig. 27 Finite element
computation showing the
component of the Cauchy
stress distribution in the
direction of the applied load
for a uniaxial tensile load of
1 N applied to strips in the
circumferential and axial
directions with fiber
dispersion parameter
κ = 0.226. Reproduced from
Fig. 12 of Gasser et al.
(2006) with permission
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symmetric dispersions for the two fiber families with mean fiber direction in the
circumferential–axial plane. The purpose of this section, therefore, it to provide a
modification of the rotationally symmetric dispersion model that takes account of
these new results. Our analysis here is based on the recent paper by Holzapfel et al.
(2015), but for consistency with the previous sections herein some of the notation
has been changed.

With reference to Fig. 20 we again assume that a general fiber direction N within
a dispersion is given by (169), which we repeat here for ease of reference as

N(Θ,Φ) = sin Θ cos Φ e1 + sin Θ sin Φe2 + cos Θ e3, (216)
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with Θ ∈ [0, π ], Φ ∈ [0, 2π ], and, locally, for a circular cylinder, e1, e2 defining
the tangential plane of a cylindrical coordinate system, e1 being the circumferential
direction and e2 the axial direction. Thus, e3 is the outward radial direction.

We again adopt the notation ρ(Θ,Φ) for the fiber orientation density, and this is
normalized according to (170). The requirement that ρ is independent of the sense of
N again gives ρ(π − Θ,π + Φ) = ρ(Θ,Φ). The experimental results of Schriefl
et al. (2012) suggest two additional symmetries, the in-plane symmetry ρ(Θ, π +
Φ) = ρ(Θ,Φ), and the out-of-plane symmetry ρ(π − Θ,Φ) = ρ(Θ,Φ), as a result
of which we can now focus on the ranges of values Θ ∈ [0, π/2] and Φ ∈ [0, π ].

Again we assume that the material properties are independent of the sense of N,
so that the strain-energy function depends on N via the tensor product N ⊗ N, as in
Sect. 6.1, through the (symmetric) generalized structure tensor H defined in (171),
which, in view of the symmetries mentioned above, we now write as

H = 1

π

∫

Ω ′
ρ(Θ,Φ)N ⊗ N sin ΘdΘdΦ, (217)

where Ω ′ = {(Θ,Φ) | Θ ∈ [0, π/2], Φ ∈ [0, π ]}.
With reference to the basis e1, e2, e3 we denote the components ofH by Hi j = Hji ,

so that (in the summation convention) H = Hi jei ⊗ e j . However, the symmetries of
ρ identified above ensure that H13 = H23 = 0. In view of the restriction (172) there
remain only three independent components of H. Thus, we consider

H11, H22, H12, with H33 = 1 − H11 − H22. (218)

It was found in Schriefl et al. (2012) that the in-plane and out-of-plane dispersions
are essentially independent, which means that ρ(Θ,Φ) can be decoupled as

ρ(Θ,Φ) = ρop(Θ)ρip(Φ), (219)

where ρop(Θ) and ρip(Φ) are the out-of-plane and in-plane fiber orientation densities,
respectively. The symmetries discussed above then impose the conditions

ρop(π − Θ) = ρop(Θ), ρip(π + Φ) = ρip(Φ). (220)

As a result, with the symmetries accounted for, the normalization (170) gives

1

π

∫ π/2

0
ρop(Θ) sin ΘdΘ

∫ π

0
ρip(Φ)dΦ = 1. (221)

Clearly, the out-of-plane dispersion has rotational symmetry, and guided therefore
by the normalization (178) in the case of rotational symmetry, we assume that ρop(Θ)

is normalized according to
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∫ π/2

0
ρop(Θ) sin ΘdΘ = 1, (222)

which leaves the normalization of ρip(Φ) in the form

1

π

∫ π

0
ρip(Φ)dΦ = 1. (223)

Analogously to the dispersion parameter κ defined in (180) we now define the
out-of-plane dispersion parameter κop by

κop = 1

2

∫ π/2

0
ρop(Θ) sin3 ΘdΘ, (224)

which lies in the range of values

0 ≤ κop ≤ 1/2, (225)

as discussed in Sect. 6.1.1 in respect of κ . Thus, in particular, κop = 1/3 corresponds
to an isotropic dispersion with ρop = 1.

Note that (223) is automatically satisfied if ρip(Φ) ≡ 1, which corresponds to
in-plane isotropy, in which case H12 = 0, H11 = H22 = κop, and H33 = 1 − 2κop,
so that the dispersion is rotationally symmetric with mean fiber direction e3. Three-
dimensional isotropy arises if ρop(Θ) = ρip(Φ) = 1 and κop = 1/3.

Having considered the out-of-plane dispersion in terms of κop, we now discuss
the in-plane dispersion. From the definitions (217), (226) and (227) with Eq. (219)
the components of H are calculated simply as

Hi j = 2κopκ̄i j , i, j ∈ {1, 2}, H11 + H22 = 2κop, H33 = 1 − 2κop, (226)

where κ̄11, κ̄22 and κ̄12 are given by

κ̄11 = 1

π

∫ π

0
ρip(Φ) cos2 ΦdΦ, κ̄22 = 1

π

∫ π

0
ρip(Φ) sin2 ΦdΦ, (227)

κ̄12 = 1

π

∫ π

0
ρip(Φ) sin Φ cos ΦdΦ. (228)

It follows from (223) that
κ̄11 + κ̄22 = 1. (229)

Note that in the case of in-plane isotropy, ρip(Φ) ≡ 1, it follows that κ̄12 = 0 and
κ̄11 = κ̄22 = 1/2.

If the mean in-plane fiber direction coincides with e1 or e2 then we also have κ̄12 =
0. We then consider a mean in-plane fiber direction M, as depicted in Fig. 28, with
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Fig. 28 Schematic of the
in-plane mean fiber direction
M = cos ϕ e1 + sin ϕ e2,
with in-plane unit vectors e1
(circumferential) and e2
(axial) and plane normal e3

e1

e2
e3

M

φ

the dispersion symmetric about M, which is a unit vector given by M = cos ϕ e1 +
sin ϕ e2, ϕ being the angle between M and the circumferential direction e1. With
respect to axes aligned with e′

1 = M and e′
2 = − sin ϕ e1 + cos ϕ e2, we denote the

dispersion parameters by κ̄ ′
i j and in this case also κ̄ ′

12 = 0. In such a case we drop
the bars and use the notation κ11 and κ22, noting that κ11 + κ22 = 1.

Then, the dispersion components κ̄i j are related to κi j , i, j ∈ {1, 2}, and the angle
ϕ by

κ̄11 = κ11 cos2 ϕ + κ22 sin2 ϕ, κ̄12 = (κ11 − κ22) sin ϕ cos ϕ, (230)

with κ̄22 given by (229), and hence

tan 2ϕ = 2κ̄12

κ̄11 − κ̄22
. (231)

Note that
(κ̄11 − κ̄22)

2 + 4κ̄2
12 = (κ11 − κ22)

2 (232)

is an invariant, i.e., independent of ϕ. Clearly then, given the angle ϕ, there is only
one independent in-plane dispersion parameter. We take this to be κ22, which we
denote by κip henceforth.

Now let us refer the structure tensor H to the axes e′
1, e

′
2 identified above, along

with e′
3 = e3, and let H ′

i j be the corresponding components of H, where

H ′
11 = 2κop(1 − κip), H ′

22 = 2κopκip, H ′
33 = 1 − 2κop (233)

and H ′
i j = 0, i 	= j . By using the identity e′

1 ⊗ e′
1 + e′

2 ⊗ e′
2 + e′

3 ⊗ e′
3 = Ir, the

spectral form of H, i.e.,

H = H ′
11e

′
1 ⊗ e′

1 + H ′
22e

′
2 ⊗ e′

2 + H ′
33e

′
3 ⊗ e′

3, (234)

can be rewritten as

H = 2κopκipIr + 2κop(1 − 2κip)M ⊗ M + (1 − 2κop − 2κopκip)Mn ⊗ Mn, (235)

where the unit vector Mn is now used in place of e3. This is the generalized structure
tensor associated with a fiber dispersion that has a single in-plane mean direction
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M, and because of the considered symmetries M is also the mean direction of the
three-dimensional dispersion.

We emphasize that H involves just two independent dispersion parameters, κop

and κip, and κop can be calculated when ρop is prescribed, while κ̄11, κ̄22 and κ̄12 can
be determined from a given form of ρip. The latter lead to the angle ϕ via (231). The
calculations are exemplified in the following section by considering ρop and ρip to
be von Mises distributions.

Special Cases

It is worthwhile at this point to identify the values of κop and κip for which the structure
tensor (235) reduces to the particular structure tensors considered previously. First,
by taking κip = 1/2, we obtain

H = κopIr + (1 − 3κop)Mn ⊗ Mn, (236)

which is the structure tensor of a rotationally symmetric dispersion with mean fiber
direction Mn. Alternatively, we may obtain

H = κIr + (1 − 3κ)M ⊗ M (237)

by setting κ = 2κopκip = 1 − 2κop, which is the structure tensor of a rotationally
symmetric dispersion with mean fiber direction M. If there is no dispersion then by
taking κop = 0 and κ = 0, respectively, in these two cases we obtain H = Mn ⊗ Mn

andH = M ⊗ M. The structure tensor for an isotropic dispersion of fibers is obtained
by taking either κop = 1/3 in (236) or κ = 1/3 in (237).

The structure tensor Ĥ for a two-dimensional dispersion given in (205) is obtained
from (235) by setting κop = 1/2 and κip = κ , and noting that the in-plane identity
is given by Îr = Ir − Mn ⊗ Mn. Then, with κ = 1/2, we obtain the structure tensor
for an isotropic in-plane dispersion, namely Ĥ = Îr/2.

6.4.1 Describing Dispersions in Terms of von Mises Distributions

We consider π -periodic von Mises distributions that account for the symmetries
identified at the beginning of Sect. 6.4. For general details of von Mises distributions
we refer to Fisher et al. (1987). We begin by representing the out-of-plane orientation
density ρop(Θ) as a von Mises distribution of the form

ρop(Θ) = 4

√
b

2π

exp(−2b cos2 Θ)

erf(
√

2b)
. (238)

This can be obtained from the ρ(Θ) given in (182) in Sect. 6.1.1 by replacing b by
−b and leads to the closed-form expression for κop given by
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κop = 1

2
− 1

8b
+ 1

4

√
2

πb

exp(−2b)

erf(
√

2b)
, (239)

which has the character shown in Fig. 22 as for κ in (184) but with b and −b inter-
changed.

For ρip(Φ) we consider the von Mises distribution

ρip(Φ) = exp(−a cos 2Φ)

I0(a)
, (240)

which has a different normalization from ρop(Θ), where the constant a is again a
concentration parameter, while I0(a) is the modified Bessel function of the first kind
of order 0 defined by

I0(x) = 1

π

∫ π

0
exp(x cos α)dα. (241)

The distribution (240) is slightly different from that used in Holzapfel et al. (2015)
and is chosen to have its maximum at the center Φ = π/2 of the integration interval.
The forms of the curves of ρip(Φ) for different values of a are, apart from the different
scale, identical to those shown in Fig. 21. When a → ∞, ρip(Φ) becomes a delta
function.

It is instructive to visualize the dispersion in three dimensions by plotting
ρ(Θ,Φ)N = ρop(Θ)ρip(Φ)N. Thus, Fig. 29 shows this for the different cases of
dispersions considered, as described in the figure caption.

Since the distribution (240) is symmetric about Φ = 0 it follows from the defin-
ition (228) that κ̄12 = 0, and from (227), on dropping the bars, that κ11 and κ22 can
be obtained in the closed forms

κ11 = 1

2
− I1(a)

2I0(a)
, κ22 = κip = 1

2
+ I1(a)

2I0(a)
, (242)

where

I1(x) = 1

π

∫ π

0
exp(x cos α) cos αdα (243)

is the modified Bessel function of the first kind of order 1. Note that the expressions
for κ11 and κ22 are reversed compared with those given in Holzapfel et al. (2015)
because of the different form of ρip(Φ) adopted here. Each of κ11 and κ22 lies in the
range [0, 1] subject to κ11 + κ22 = 1 and plots of them as functions of a are shown
in Fig. 30. The character of κ22 is very similar to that of κ shown in Fig. 22 although
the range of values is different.

If κ11 and κ22 are the dispersion parameters corresponding to a mean fiber direction
at an angle ϕ to the e1 direction (see Fig. 28) then the dispersion parameters κ̄11, κ̄22

and κ̄12 are given by (229) and (230).
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Fig. 29 Visualization of the fiber dispersion defined by ρ(Θ,Φ)N = ρop(Θ)ρip(Φ)N based on
the von Mises distributions (238) and (240). The plots have been scaled differently and represent a
a nonrotationally symmetric dispersion, b a rotationally symmetric dispersion, c perfectly aligned
fibers, d a 3D isotropic dispersion and e a planar dispersion. The planar isotropic case corresponds to
a circle in e. Except for case c the distance from the center to the surface represents the probability of
finding a fiber in the direction N. Reproduced from Fig. 6 of Holzapfel et al. (2015) with permission

Fig. 30 Plots of κ11 and κ22
versus a based on the
formulas in (242)

-15 -10 -5 5 10 15

0.2

0.4

0.6

0.8

1.0

a

κ22κ11

6.4.2 Consideration of Data from Schriefl et al. (2012)

We now illustrate the results from Schriefl et al. (2012) by considering the angular
dispersion data from a single adventitial specimen of a human non-atherosclerotic
abdominal aorta which were included in the average data set in Fig. 5 of their paper.
In Fig. 31 we show the data as a probability density for the out-of-plane dispersion
together with a curve obtained by fitting ρop(Θ) obtained from (238) to the data
for which the concentration parameter was found to be b = 19.44. Incidentally, the
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ρop(Θ )

6

12

0
π/2 Θ π0

Fig. 31 Representative set of out-of-plane fiber angular dispersion data from Schriefl et al. (2012)
and the fit to these data with the orientation density function (238) with concentration parameter
b = 19.44 and with ρop(Θ) plotted against Θ . Based on Fig. 5b in Holzapfel et al. (2015), with
permission

Fig. 32 Representative set
of in-plane fiber angular
dispersion data from Schriefl
et al. (2012) and the fit to
these data with the
orientation density function
(240) with concentration
parameter a = 2.54 and
angle ϕ = 47.99◦ and with
ρip(Θ) plotted against Φ.
Based on Fig. 5a in Holzapfel
et al. (2015), with permission

ρip(Φ)

2

4

0
π/2 Φ π0

2φ

vertical scale shown in the corresponding figure (Fig. 5b) in Holzapfel et al. (2015)
is incorrect, and Fig. 31 corrects this.

In Fig. 32 we show the data of the in-plane bimodal dispersion, the data being
fitted by the curve shown using ρip(Φ) from (240) with Φ replaced by Φ + ϕ and
Φ − ϕ together, ϕ being determined as ϕ = 47.99◦, and the concentration parameter
as a = 2.54.

Note that the data shown in Figs. 31 and 32 are centered on Θ = π/2 rather than
the Θ = 0 used in Holzapfel et al. (2015).

From the formulas (239) and (242)2 with the values of b and a above we then
obtain the corresponding values of κop and κip as κop = 0.494 and κip = 0.885. Note
that in Holzapfel et al. (2015) the value of κop was 0.493 and, because we are using a
slightly different version of ρip here κip in Holzapfel et al. (2015) was 0.116, whereas
the value of κ11 here is 0.115.

6.4.3 An Extended Constitutive Law

We recall the generalized structure tensor defined in (235) as
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H = 2κopκipIr + 2κop(1 − 2κip)M ⊗ M + (1 − 2κop − 2κopκip)Mn ⊗ Mn, (244)

for a single family of dispersed fibers. We now consider a second family with mean
fiber direction M′ and the same material properties with structure tensor

H′ = 2κopκipIr + 2κop(1 − 2κip)M′ ⊗ M′ + (1 − 2κop − 2κopκip)Mn ⊗ Mn,

(245)
M and M′ lying in the (e1, e2) plane and symmetrically arranged with respect to the
axes, and Mn = e3 normal to that plane, as depicted in Fig. 33. Thus,

M = cos ϕ e1 + sin ϕ e2, M′ = cos ϕ e1 − sin ϕ e2. (246)

Note, with reference to Fig. 11, that e1 and e2 may be identified with EΘ and EZ ,
respectively.

The associated generalized invariants are denoted I ∗
4 and I ∗

6 , generalizing the
definitions used in (186)1 and (194), the latter with κ ′ = κ , and given by

I ∗
4 = tr (CH) = 2κopκip I1 + 2κop(1 − 2κip)I4 + (1 − 2κop − 2κopκip)In, (247)

I ∗
6 = tr (CH′) = 2κopκip I1 + 2κop(1 − 2κip)I6 + (1 − 2κop − 2κopκip)In, (248)

where In = Mn · (CMn)

Note, by considering the (orthogonal) unit bisectors of M and M′, namely e1 =
(M + M′)/2 cos ϕ and e2 = (M − M′)/2 sin ϕ, where 2ϕ is the angle between M
and M′, and using the identity

e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 = Ir, (249)

we obtain

In = I1 − I4 + I6 − 2I8 cos 2ϕ

sin2 2ϕ
, (250)

Fig. 33 Schematic of the
in-plane mean fiber
directions
M = cos ϕ e1 + sin ϕ e2 and
M′ = cos ϕ e1 − sin ϕ e2,
with in-plane unit vectors e1
(circumferential) and e2
(axial) and plane normal e3

e1

e2

e3

M

M′

φ

φ
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where I8 is defined by (65). Thus, In is in general an independent invariant, i.e.,
independent of I1, I4, I6, except in the special case in whichM andM′ are themselves
orthogonal, and the above reduces to In = I1 − (I4 + I6).

Now, instead of treating W as a function of just I1, I4, I6 we append the invariant
In, which appears only in I ∗

4 and I ∗
6 , and consider W (I1, I4, I6, In) = W ∗(I1, I ∗

4 , I ∗
6 ).

Recalling the connections (23) and the formula (42)2, the second Piola–Kirchhoff
stress tensor P is then given by

P = 2
∂W

∂C
− pC−1 = 2(W1Ir + W4M ⊗ M + W6M

′ ⊗ M′ + WnMn ⊗ Mn) − pC−1,

(251)

and the Cauchy stress tensor is obtained from σ = FPFT. When expressed in terms
of W ∗(I1, I ∗

4 , I ∗
6 ) it can then be shown that the Cauchy stress is given by

σ = −pI + 2W ∗
1 B + 2W ∗

4 h + 2W ∗
6 h

′, (252)

the same formula as in (195), where h = FHFT and h′ = FH′FT, but H and H′ are
now given by (244) and (245). Hence

h = 2κopκipB + 2κop(1 − 2κip)m ⊗ m + (1 − 2κop − 2κopκip)mn ⊗ mn, (253)

h′ = 2κopκipB + 2κop(1 − 2κip)m′ ⊗ m′ + (1 − 2κop − 2κopκip)mn ⊗ mn, (254)

with m = FM, m′ = FM′, mn = FMn.
We now extend the decomposition of the strain-energy function given in (197) to

the present situation by writing it as

W ∗(I1, I ∗
4 , I ∗

6 ) = W ∗
iso(I1) + W ∗

aniso(I
∗
4 , I ∗

6 ), (255)

but now with I ∗
4 and I ∗

6 given by (247) and (248). With this change, as in (198) and
(199), we take

W ∗
iso = 1

2
μ(I1 − 3) (256)

and

W ∗
aniso = k1

2k2

∑

i=4,6

{exp[k2(I
∗
i − 1)2] − 1}. (257)

Following Holzapfel et al. (2000), we make the common assumption that the
fibers do not resist any compression and are only active in tension. In this respect the
invariants I4 and I6 act as switches between fiber compression and tension so that
W ∗

aniso only contributes to the strain energy if either I4 > 1 or I6 > 1. Thus, if one
or both of these conditions is not satisfied then the corresponding part of W ∗

aniso is
omitted. If neither condition is satisfied then the tissue response is purely isotropic.
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For discussion of subtle points regarding the choice of switching criteria, we refer to
Holzapfel and Ogden (2015).

6.4.4 Material Parameter Identification

For the particular data considered in Sect. 6.4.2 the dispersion parameters κop and κip

and the angle ϕ, and hence the mean fiber directions M and M′, were determined on
the basis of histology and imaging. Thus, for the model (255) with (256) and (257), it
remains to determine the material parameters μ, k1 and k2. In Holzapfel et al. (2015)
they were determined by fitting the model to uniaxial data.

To review this we first refer to the definition of pure homogeneous strain in (99)
in terms of the principal stretches λ1, λ2, λ3, which satisfy the incompressibility
constraint λ1λ2λ3 = 1, in which context M and M′ were given by (101), the same
formulas as in (246). Correspondingly, m and m′ are given by (102) and mn =
λ3Mn = λ3e3.

From (103) and (104)1, the invariants I1, I4, I6 are given by

I1 = λ2
1 + λ2

2 + λ2
3, I4 = I6 = λ2

1 cos2 ϕ + λ2
2 sin2 ϕ, (258)

while In = λ2
3.

The nonzero components of h and h′ are calculated as

h11 = h′
11 = 2κop[κip + (1 − 2κip) cos2 ϕ]λ2

1, (259)

h22 = h′
22 = 2κop[κip + (1 − 2κip) sin2 ϕ]λ2

2, (260)

h33 = h′
33 = (1 − 2κop)λ

2
3, (261)

h12 = −h′
12 = 2κop(1 − 2κip)λ1λ2 sin ϕ cos ϕ, (262)

and hence I ∗
4 and I ∗

6 can be written simply as

I ∗
4 = I ∗

6 = h11 + h22 + h33. (263)

The nonzero components of the Cauchy stress tensor are obtained from (252) as

σ11 = μλ2
1 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h11 − p, (264)

σ22 = μλ2
2 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h22 − p, (265)

σ33 = μλ2
3 + 4k1(I

∗
4 − 1) exp[k2(I

∗
4 − 1)2]h33 − p. (266)

On specializing to the case of simple tension with σ22 = σ33 = 0, elimination of
p from (264)–(266) leaves two equations, namely the incompressibility condition
λ1λ2λ3 = 1 and the implicit equation σ22 − σ33 = 0, which determine λ2 and λ3 in
terms of λ1, so that σ11 can be expressed in terms of λ1, the material parameters
μ, k1 and k2 and the structural parameters κip, κop and ϕ. To determine the material
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Fig. 34 Fitting of the model (255)–(257) to the results of uniaxial tension tests. The Cauchy
stresses at a stretch of 1.3 are 16.6 kPa (axial) and 12.2 kPa (circumferential) and are identified here
for reference to values determined in a finite element simulation of a uniaxial tension test illustrated
in Fig. 35. Reproduced from Fig. 8 of Holzapfel et al. (2015) with permission

parameters, the values of the structural parameters given in Sect. 6.4.2 are used in con-
junction with (unpublished) experimental data from uniaxial tension tests performed
in the Graz lab on an adventitial layer of a human non-atherosclerotic abdominal
aorta cut along the axial and circumferential directions. Following Holzapfel et al.
(2015), and bearing in mind the different definitions of ρop and ρip herein, we use
the values ϕ = ±47.99◦, κop = 0.493, κip = 0.116 for this exercise.

Full details of the fitting procedure are given in Holzapfel et al. (2015) wherein
the material parameters μ = 10.07 kPa, k1 = 5.89 kPa, k2 = 21.62 (dimensionless)
were obtained, giving an excellent fit to the data, as shown in Fig. 34.

6.4.5 Application to the Extension of Adventitial Strips

In this section we illustrate the results of a finite element implementation of the
constitutive model (255)–(257) in which uniaxial extension tests related to the afore-
mentioned experiments on strips in the circumferential and axial directions of an
adventitial layer of a human non-atherosclerotic abdominal aorta are simulated. For
the implementation each strip was assumed to have initial length, width and thick-
ness of 10.0, 3.0 and 0.5 mm, respectively, and was subjected to a stretch of 1.3.
The ends of each strip were fixed as if in the mounting of a testing machine and
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were not allowed to deform, as a result of which the deformation of each strip was
nonhomogeneous.

We adopt the material parameters determined in Holzapfel et al. (2015) and take
them to be uniform over each strip. The two considered fiber families with symmet-
ric dispersions and mean fiber directions are assumed to make angles ϕ of ±47.99◦
with the circumferential direction, as indicated in Fig. 33, with dispersion parameters
κip = 0.116 and κop = 0.493. The implementation, details of which are described in
Holzapfel et al. (2015), was performed using the finite element analysis program
FEAP (2013). Specifically, numerical results were obtained for the distribution of
Cauchy stress component in the direction of the applied stretch for each nonhomo-
geneous extension, which was fixed at a stretch of 1.3.

The results are illustrated in Fig. 35 for both circumferential and axial specimens.
For both specimens the Cauchy stresses were found to be within the range of values
determined from the experimental results in Fig. 34. In fact, in the center of each

Fig. 35 Finite element
results for circumferential
and axial specimens based
on data from an adventitia,
subjected to a stretch of 1.3.
The distribution of the
component of the Cauchy
stress in the direction of the
applied stretch is shown in
each case. The undeformed
(initial) configuration is
indicated by solid lines.
Reproduced from Fig. 11 of
Holzapfel et al. (2015) with
permission
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specimen the values of the Cauchy stress in the direction of the applied stretch
were found to be marginally higher than the stresses at the same value (1.3) of the
(homogeneous) stretch noted in Fig. 34. This difference is attributed to the effect of
the boundary constraints on the ends.

7 Concluding Remarks

This chapter was in part aimed at illustrating the general value of using nonlinear
continuum mechanics as a mathematical modeling framework for describing and
predicting the mechanical, in particular the elastic, properties of fibrous soft biolog-
ical tissues. The approach adopted here is based on the notion of structure tensors,
which are used to characterize fiber directions within the tissues. In the present con-
text the starting point was the paper by Holzapfel et al. (2000), which incorporated
the fibrous structure into constitutive models of tissues. As more experimental evi-
dence, and more structural information, became available this allowed us to build
up the level of complexity of the model, first by incorporating dispersion into the
model (Gasser et al. 2006). On the basis of imaging and histology more detailed
information on the angular fiber dispersion was revealed in the work of Schriefl et al.
(2012), which determined, in particular, various structural parameters, showing that
the dispersion is not rotationally symmetric, and these new findings were incorpo-
rated into the recent model of Holzapfel et al. (2015). The fact that the structure
tensor approach can also be used to incorporate residual stresses into the constitu-
tive theory has also been highlighted. The problem of extension and inflation of an
artery, treated simply as a circular cylindrical tube, has been considered throughout
the chapter as an example application of the models to a prototype boundary-value
problem.

The modeling allows us to define strain-energy functions from which the stress
and the elasticity tensors can be computed, and these form the basis for implementing
the model within a finite element framework, although this is not the concern of the
present chapter. Expressions for the elasticity tensors have not been included here but
can be found in, for example, Holzapfel et al. (2015). For a more detailed discussion
we refer to Holzapfel (2000). Nevertheless, some examples of the results produced
by finite element computations have been illustrated in Sect. 6.

For artery walls many more data are needed to determine finer details of the
collagen fiber structure, in particular the dispersion of collagen fibers, and the inelastic
behavior of the tissues in both health an disease in order to inform further development
of the modeling process. This applies also to a range of other soft biological tissues,
in particular those for which the experimental and modeling activities have not thus
far been so extensive. In vivo data are really needed as a basis for constructing more
realistic models of tissue and organ mechanics.
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