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Abstract
Healing of soft biological tissue is the process of self-recovering or self-repairing the injured or damaged extracellular matrix 
(ECM). Healing is assumed to be stress-driven, with the objective of returning to a homeostatic stress metrics in the tissue 
after replacing the damaged ECM with new undamaged one. However, based on the existence of intrinsic length scales in 
soft tissues, it is thought that computational models of healing should be non-local. In the present study, we introduce for the 
first time two gradient-enhanced constitutive healing models for soft tissues including non-local variables. The first model 
combines a continuum damage model with a temporally homogenized growth model, where the growth direction is deter-
mined according to local principal stress directions. The second one is based on a gradient-enhanced healing model with 
continuously recoverable damage variable. Both models are implemented in the finite-element package Abaqus by means of 
a user subroutine UEL. Three two-dimensional situations simulating the healing process of soft tissues are modeled numeri-
cally with both models, and their application for simulation of balloon angioplasty is provided by illustrating the change of 
damage field and geometry in the media layer throughout the healing process.

Keywords Healing · Gradient-enhanced damage · Soft tissue · Growth and remodeling · Abaqus UEL

1 Introduction

Healing of soft biological tissue is the process of self-recov-
ering or self-repairing the injured or damaged extracellular 
matrix (ECM). Healing is a complex biochemical and bio-
mechanical process, usually divided into four stages: hemo-
stasis, inflammation, proliferation and remodeling. These 
four stages were described in large details by Comellas et al. 
(2016) and Cumming et al. (2009). It was reported that the 
first three stages (from hemostasis to proliferation) may last 
several weeks, and the final stage of remodeling may last 
from weeks to years. This last stage consists in a continuous 

turnover (synthesis and degradation) of the ECM simultane-
ously with the production of scar tissue.

Computational modeling can provide insight into healing 
of soft tissues at both short term and long term. Numeri-
cal simulation of healing in soft tissues has been a topic of 
intense research. Tepole and Kuhl (2013) and Valero et al. 
(2015) provided a comprehensive review of computational 
models of dermal wound healing. Generally, there are two 
types of approaches. The first type focuses on the underlying 
cellular and biochemical mechanisms based on continuum or 
hybrid discrete/continuum approaches, including the simula-
tion of wound contraction (Valero et al. 2015; Javierre et al. 
2009) and angiogenesis (Schugart et al. 2008). Another 
type of approaches, more phenomenological, focuses on 
the change of material properties in the tissue during the 
remodeling phase.

Important mechanisms involved in soft tissue healing, 
such as collagen fiber reorientation and collagen turnover, 
were modeled using growth and remodeling (G&R). A large 
number of G&R computational approaches exist, among 
which the constrained mixture theory which was introduced 
by Humphrey and Rajagopal (2011) about 20 years ago and 
has been employed by many others (Valentın and Holzapfel 
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2012; Valentín et al. 2013; Famaey et al. 2018). The com-
putational cost of this approach was significantly reduced 
by a temporally homogenized technique proposed by Cyron 
et al. (2016).

Recently, Comellas et al. (2016) developed a homeosta-
sis-driven turnover remodeling model for healing in soft tis-
sues based on continuum damage mechanics (CDM). In this 
approach, the healing process was simulated by a continu-
ously recoverable damage variable (Comellas et al. 2016).

Intrinsic length scales, such as the length of collagen 
fibers, are physically inherent to soft tissues and numerical 
models of healing should consider them through non-local 
approaches. Moreover, mesh dependency is a traditional 
issue in damage models that non-local approaches are able 
to overcome (Dimitrijevic and Hackl 2008; Dimitrijevic and 
Hackl 2011; Waffenschmidt et al. 2014). However, there are 
no non-local computational models for soft biological tis-
sues in the literature to the authors’ best knowledge, and the 
effects of intrinsic length scales in healing are still unknown.

From the viewpoint of continuum damage mechanics, 
local continuum damage models have a major drawback: 
their solutions are significantly mesh-dependent, with 
vanishing of the localized damage zone when the mesh is 
refined (Waffenschmidt et al. 2014; Mousavi et al. 2018).

First, non-local damage models of soft tissues were 
introduced by Waffenschmidt et al. (2014), using a gradi-
ent-enhanced large-deformation continuum damage model 
based on the previous work of Dimitrijevic and Hackl (2008, 
2011). In this approach, the local free energy function is 
enhanced by a gradient-term containing the gradient of an 
additional non-local damage variable, and a penalization 
term is also introduced to ensure equivalence between the 
local and non-local damage variables. Ferreira et al. (2017) 
also presented an integral-type non-local averaging damage 
model for anisotropic hyperelastic materials. Despite this 
state of the art in non-local damage modeling, healing of soft 
tissues remains a frontier in non-local continuum mechanics. 
Fernández et al. (2012) proposed a remodeling model for the 
bone tissue including a diffusion term to address localization 
problems.

In this paper, we introduce for the first time two gradient-
enhanced constitutive healing models for soft tissues includ-
ing non-local variables in a similar fashion as in previous 
work from Dimitrijevic and Hackl (2008, 2011) and Waffen-
schmidt et al. (2014). By virtue of the proposed model, an 
intrinsic length-scale parameter is for the first time included 
in a healing model with a gradient-enhanced term, and a 
non-local variable is introduced with a penalization term to 
reduce mesh dependency.

The first non-local healing model combines the non-local 
continuum damage model with a temporally homogenized 
G&R model. Damage is modeled with the gradient-enhanced 
approach, and a term of mass production is introduced to 

model mass variations due to tissue production. There exist 
a variety of growth models, from surface to volume growth, 
taking into account mass variations in biological materials 
as described in Ganghoffer and Haussy (2005), Ganghof-
fer (2010a, b, 2012), Ganghoffer and Boubaker (2017). In 
this work, a temporally homogenized growth model is used 
based on the work from Cyron et al. (2016), permitting sig-
nificant reduction of the computational cost compared to 
original work from Humphrey and Rajagopal (2011). In this 
temporally homogenized growth model, the rate of mass 
production satisfies a homeostasis-driven governing equa-
tion. Mass production induces inelastic deformations which 
are modeled in a similar fashion as in plasticity (Rodriguez 
et al. 1994). We assume that the growth direction is aligned 
with the direction of the first principal stress.

The second non-local healing model is based on the heal-
ing model proposed by Comellas et al. (2016) that we turned 
into a gradient-enhanced version. In this model, the healing 
is simulated by turning the damage variable into a recover-
able variable. The process of damage recovery is controlled 
by the healing rate and can be integrated numerically by a 
finite difference scheme.

Both models are implemented in the finite-element pack-
age Abaqus by means of a user subroutine UEL. In the fol-
lowing, the general gradient-enhanced G&R healing model 
is developed in Sect. 2. Section 3 provides two specific 
gradient-enhanced healing models, including the details of 
equations for the rate and direction of growth and the evolu-
tion of damage. Section 4 outlines the process of numerical 
implementation of the proposed methods. Three examples 
are illustrated in Sect. 5 with the aim of verifying these mod-
els. Finally, conclusions are given in Sect. 6.

2  General equations for gradient‑enhanced 
healing models

2.1  Basic kinematics

Let � = �(�, t) describe deformations of a body from ref-
erential positions � ∈ �(0) to their actual counterparts 
� ∈ �(t) . Within this framework, the deformation gradient 
is defined as

Accordingly, reference volumes dV  and current volumes 
dv are related such as

where J is the Jacobian of the deformation (determinant of 
F).

Growth is a process of mass production or removal, 
whereby volumes may change inelastically. This is captured 

(1)� = ∇��

(2)dv = det(�)dV=JdV
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by an inelastic deformation gradient �g . Therefore, the total 
deformation at any time t is

2.2  Gradient‑enhanced healing model

The general strain energy function per unit reference volume 
at each G&R time t is assumed as

where �̂�(�e(t)) is the original (undamaged) strain energy 
depending on the elastic deformation �e(t) , H(t) is to a time-
dependent function to describe the level of healing and has 
different forms for different healing models in the following 
section.

Following the approach of Dimitrijevic and Hackl (2008, 
2011), a gradient-enhanced non-local free energy function 
is added to the energy given in Eq. (4),

In Eq.  (5), cd represents the gradient parameter that 
defines the degree of gradient regularization and the inter-
nal length scale. Comparing Eqs. (4) and (5), two additional 
terms are added, introducing the three following variables:

• the variable field � , which transfers the values of the 
damage parameter across the element boundaries to make 
it non-local in nature,

• the energy-related penalty parameter �d which approxi-
mately enforces the local damage field and the non-local 
field to coincide,

• parameter �d which is used as a switch between the local 
and enhanced model.

3  Two gradient‑enhanced healing models

3.1  Gradient‑enhanced healing model based 
on G&R

In this section, a new gradient-enhanced healing model 
based on G&R is presented inspired by Valentín et  al. 
(2013). The strain energy function per unit reference volume 
at each G&R time t is assumed as

where

(3)�(t)=�e(t)�g(t)

(4)𝜓(t) = H(t)�̂�(�e(t))

(5)𝜓(t) = H(t) �̂�(�e(t)) +
cd

2
‖‖∇�𝜙

‖‖
2
+

𝛽d

2

[
𝜙 − 𝛾dd

]2

(6)𝜓1(t) = H1(t) ⋅ �̂�(�e(t)) +
cd

2
‖‖∇�𝜙

‖‖
2
+

𝛽d

2

[
𝜙 − 𝛾dd

]2

(7)H1(t) = f (d)
�0

�(t)
Q(t) +

�g(t)

�(t)

In Eqs. (7) �0 is mass density per unit reference volume 
at t = 0 , just prior to the beginning of G&R, �g(t) denotes 
the change of mass density computed by �g(t) = �(t) − �0 , 
and �g(t) are caused by G&R only and induce inelastic 
deformations, whereas the motion induces elastic motions. 
Q(t) ∈ [0, 1] is the mass fraction that was present at t = 0 
that survives to time t  (Valentín et al. 2013) and f (d) rep-
resents a function of damage variable d that measures the 
material stiffness loss and satisfies the conditions.

It is noted that density variations �g(t) are caused by 
G&R and induce inelastic deformations, whereas the elas-
tic deformation gradient �e(t) satisfies Eqs. (3) and (4).

According to Braeu et  al. (2017), the deformation 
caused by growth is regarded as an inelastic deforma-
tion, where the change of volume is related to a change in 
mass. Hence, the rate of inelastic deformation gradient �̇g 
is obtained as in Braeu et al. (2017)

where the second-order tensor � defines the growth direc-
tion and is normalized without loss of generality such that 
tr(�) = 1.

The Davis’ law (Davis 1867) suggests that perturbations 
from a preferred homeostatic state in soft collagenous tis-
sues are answered by biological G&R processes aimed 
to restore normalcy. The Davis’s law can be invoked to 
justify anisotropic growth, as adding mass in directions 
normal to the maximum principal stress will automatically 
reduce the stress value and make it converge back to the 
homeostatic value (Menzel 2005; Cyron and Humphrey 
2017). A very good case illustrating this effect is related 
to the thickening of arteries due to hypertension. Indeed, 
many observations showed that arteries tend to thicken 
in response to sustained increases in blood pressure (i.e., 
hypertension) (Sáez et al. 2014). Hence, we assume the 
growth direction is aligned with the direction of the first 
principal stress. For instance, in two-dimensional cases, if 
�p is the orientation of the first principal stress, the growth 
direction tensor � in Eq. (9) can be expressed as

To determine the rate of mass production caused by 
growth �̇�g(t) in Eq. (7), two models are considered in this 
paper:

(8)

f (d) ∶ ℜ
+
→ (0, 1]

{
f (0) = 1, lim f (d) = 0

d→∞

}
with f (d) ∈ [0, 1]

(9)�̇g=
�̇�(t)

𝜌(0)
|||�g

|||
[
(�g)

−T ∶ �
]�

(10)�=

[
cos2 �p 0

0 sin2 �p

]
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3.1.1  G&R constant model

In the G&R constant model, the mass production is assumed 
to be constant during the healing process as

where kg is the healing fraction to denote the percentage of 
mass before the healing to participate to mass balance.

Therefore, the �̇�g(t) is obtained by computing the time 
derivative such as

Considering total mass density �(t) = �0 + �g(t) , so the rate 
of total mass density is

The total mass density �(t) at time step n + 1 can be 
obtained by the finite difference scheme

where Δt is the time step.
According to Eqs. (11) and (14), the mass densities �g(t) 

and �(t) in Eq. (7) are determined.

3.1.2  G&R homeostatic model

In the G&R homeostatic model, the rate of mass production 
is mediated by the current stress as proposed by Braeu et al. 
(2017).

where �� is a gain-type second-order tensor, for two-dimen-
sional case, it is assumed that

and Ḋ(t) is a generic rate function for additional deposition 
that is not stress mediated (describing additional deposi-
tion or damage processes affecting the net mass production 
driven by other factors such as chemical degradation and/or 
mechanical fatigue processes), �R = �T�� is the co-rotated 
Cauchy stress tensor with the orthonormal rotation tensor 
� in polar decomposition and �h denotes the homeostatic 
stress.

The mass production �g(t) at time step n + 1 can be obtained 
by the finite difference scheme in the absence of Ḋ(t) for 
simplicity

Accordingly, total mass density �(t) at time step n + 1 can 
be obtained by the finite difference scheme

(11)kg ⋅ �0 ⋅ Q(t) + �g(t) = const

(12)�̇�g(t) = −kg ⋅ 𝜌0 ⋅ Q̇(t)

(13)�̇�(t) = (1 − kg)𝜌0 ⋅ Q̇(t)

(14)𝜌(tn + 1)=(1 − kg)𝜌0 ⋅ Q̇(tn) ⋅ Δt+𝜌(tn)

(15)�̇�g(t) = 𝜌g(t)�𝜎 ∶ (�R − �h) + Ḋ(t)

(16)��=

[
k� 0

0 k�

]

(17)�g(tn + 1)=
(
�g(tn)�� ∶

(
�R − �h

))
⋅ Δt+�g(tn)

3.2  Non‑local Comellas model

In this section, another gradient-enhanced healing model is 
established based on the healing model proposed by Comellas 
et al. (2016), in which the effective damage Deff is assumed 
as a recoverable variable in the process of healing. In this 
paper, we apply similar constitutive equations into a gradi-
ent-enhanced framework. Here only some key equations for 
healing process are written, the readers can refer to literature 
(Dimitrijevic and Hackl 2008, 2011; Waffenschmidt et al. 
2014) for detailed equations.

The strain energy function per unit reference volume is 
written such as

where

In Eq. (19), the second term is to introduce the gradient 
parameter cd that defines the degree of gradient regulariza-
tion and the internal length scale. In order to make the model 
non-local, the third term is used for penalizing the difference 
between the damage field d and the non-local variable field �.

According to Comellas et al. (2016), the effective damage 
Deff is assumed to a recoverable variable, and its rate

where Ḋ is the rate of explicit Kachanov-like mechanical 
damage variable D = f (d) and Ṙ is the healing rate given as

where ⟨⋅⟩ represents the Macaulay brackets, �̇� is a function 
that regulates how fast healing occurs and � defines the per-
centage of stiffness that is not recovered at the end of the 
healing process.

The effective damage at time step n + 1 can be obtained 
by the finite difference scheme proposed by Comellas et al. 
(Comellas et al. 2016) as

3.3  Total potential energy and variational 
formulation

The potential energy can be written as (Dimitrijevic and Hackl 
2008; Dimitrijevic and Hackl 2011)

(18)
�(tn + 1)=

(
�g(tn)�� ∶

(
�R − �h

))
⋅ Δt+�g(tn) + �0 ⋅ Q(tn + 1)

(19)𝜓2(t)=H2(t) ⋅ �̂�(�e(t)) +
cd

2
‖‖∇�𝜙

‖‖
2
+

𝛽d

2

[
𝜙 − 𝛾dd

]2

(20)H2(t)= 1 − Deff(t)

(21)Ḋeff=Ḋ − Ṙ

(22)Ṙ = �̇�⟨Deff − 𝜉⟩

(23)Dn+1
eff

= (Dn
eff

+ ΔD + �̇�𝜉Δt)∕(1 + �̇�Δt)

(24)𝛱 = ∫
𝛺

𝜓dV − ∫
𝛺

�̄ ⋅ �dV − ∫
𝜕𝛺

�̄ ⋅ �dV
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where �̄ denotes the body force vector per unit reference 
volume and �̄ characterizes the traction vector per unit ref-
erence surface area, � represents the reference volume and 
�� is the surface boundary of �.

Minimization of the potential energy with respect to the 
primal variables � and � results in a system of equations that 
have to be zeroed globally

where �̄ is the body force vector and � the first Piola–Kirch-
hoff stress tensor.

The vectorial damage quantity � and the scalar damage 
quantity Y are defined such as

Accordingly, the spatial quantities are given by

where the factor defined as cof(�)=J�−t.

3.4  Damage evolution

The evolution of the damage variable d can be found in the 
works by Dimitrijevic and Hackl (2008, 2011) and Waffen-
schmidt et al. (2014); here, only some key equations are 
outlined.

Following standard thermodynamic consideration of Dimi-
trijevic and Hackl (2008, 2011), damage conjugate q is defined 
as

The damage condition at any time of the loading process is 
based on an energy-release rate threshold condition and cor-
responds to the model of Simo and Ju (1987)

Based on the postulate of maximum dissipation, the differ-
ential equation of the evolution of damage variable is subjected 
to Kuhn–Tucker optimality conditions (Dimitrijevic and Hackl 
2008, 2011)

(25)∫
𝛺

� ∶ ∇�𝛿�dV − ∫
𝛺

�̄ ⋅ 𝛿�dV − ∫
𝜕𝛺

�̄ ⋅ 𝛿�dV = 0

(26)∫
�

� ∶ ∇���dV − ∫
�

Y��dV = 0

(27)𝐏 = �Fe
� , 𝐘 = �∇X�

� , Y = ���

(28)𝛔 = 𝐏 ⋅ cof(𝐅−1), y = 𝐘 ⋅ cof(𝐅−1), y = J
−1 Y

(29)q = −
��

�d

(30)�d = q − r1 ≤ 0

(31)ḋ = �̇�
𝜕𝛷d

𝜕q
; �̇� ≥ 0, 𝛷d ≤ 0, �̇�𝛷d = 0

4  Finite‑element discretization

In order to approach the process of replacing the damaged soft 
tissue with new undamaged, FE computation is also divided 
into two stages, i.e., the damage process and the healing pro-
cess. This section only derives the implementation of FE for 
the healing process. For the detailed process of FE computa-
tion process, the readers can refer the work by Waffenschmidt 
et al. (2014).

Following the works of Dimitrijevic and Hackl (2008, 
2011) and Waffenschidt et al. (2014), a quadratic serendipity 
interpolation is used for both the geometry � and the field 
variables � , and a bilinear interpolation is used for the non-
local field � . According to the isoparametric concept, these 
interpolations are written as

where � denotes the coordinates in the reference element, n�en 
and n�en are the displacement nodes and non-local damage 
nodes per element, respectively.

For the healing process, at a loading time t , an incremental 
scheme based on Newton’s method is applied (Dimitrijevic 
and Hackl 2008, 2011)

where

In the above equations, the tangent terms d�∕d�,2dy∕d� , 
dy∕d� and d�∕d� are the same with the damage process as 
in the work by Waffenschmidt et al. (2014), �h(t) is a new 
time-dependent tangent stress–strain matrix in the damage and 
healing process given as

where the �e is the elasticity tensors for undamaged mate-
rial, H(t) defined in Eq. (6) is to describe the level of healing 

(32)

�h =

n
�
en∑

I=1

NI(�)�I , �h =

n
�
en∑

I=1

NI(�)�I , �h =

n
�
en∑

I=1

NI(�)�I

(33)
[
𝐑𝛗

𝐑�

]i
+

[
𝐊𝛗𝛗 𝐊𝛗�

𝐊�𝛗 𝐊��

]i
⋅

[
Δ𝛗

Δ�

]i+1
=

[
𝟎

𝟎

]

(34)

���=∫
�

∇T
x
N ⋅

[
�h(t)

]
⋅∇

x
N dv + ∫

�

[
∇T

x
N ⋅ � ⋅ ∇

x
N
]
� dv

(35)���=∫
�

∇T
x
N ⋅

d�

d�
⋅ Ndv

(36)���=∫
�

NT
⋅ 2

dy

d�
⋅ ∇T

x
Ndv

(37)���=∫
�

NT
⋅

dy

d�
⋅ N dv+∫

�

∇T
x
N ⋅

d�

d�
⋅ ∇T

x
Ndv

(38)�h(t)=H(t) ⋅ �e
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and has different forms for the non-local G&R healing model 
and the non-local Comellas model as introduced in the fol-
lowing section.

4.1  G&R healing model with gradient‑enhanced 
damage

For the non-local G&R healing models, the form of H(t) 
is determined by the choice of model for mass production.

If the G&R constant model with finite difference scheme 
in the time domain is used, H(t) at the (n + 1) th time step by 
substituting Eqs. (12) and (14) into Eq. (7)

If the G&R homeostatic model with finite difference 
scheme in time domain is obtained by substituting Eqs. (15) 
and (18) into Eq. (7)

The elastic deformation is obtained from Eq. (32), and the 
inelastic deformation due to G&R from Eq. (9); finally, the 
total deformation is given by

In Eq.  (41), the first factor on the right-hand side 
∇��(tn+1) refers to the elastic deformation, and the left-hand 
side �(tn+1) is the total deformation gradient.

4.2  Non‑local Comellas model

For the non-local Comellas model,

Since the deformation due to growth is not considered in 
non-local Comellas model, the total deformation is given 
without �g(tn+1) by

The process of numerical implementation is provided in 
Table 1. Examples for these expressions are given in the 
following sections for specific applications.

5  Numerical examples

The gradient-enhanced model and the different healing mod-
els were incorporated within the commercial finite-element 
software Abaqus/Standard by means of a user element 

(39)
H(tn+1) =

𝜌0

𝜌(tn+1)
f (d)Q(tn+1) +

(1 − kg)𝜌0 ⋅ Q̇(tn) ⋅ Δt+𝜌g(tn)

𝜌(tn+1)

(40)H(tn+1) =
�0

�(tn+1)
f (d)Q(tn+1) +

(
�g(tn)�� ∶

(
�R − �h

))
⋅ Δt+�g(tn) + �0 ⋅ Q(tn + 1)

�(tn+1)

(41)�(tn+1)=∇��(tn+1) ⋅ �g(tn+1)

(42)H(tn+1)= 1 − (D
eff

(
tn)

)
+ ΔD + �̇�𝜉Δt)∕(1 + �̇�Δt)

(43)�(tn+1)=∇��(tn+1)

subroutine (UEL) and the 2D examples are solved as plane 
strain problems. They were applied in three different situa-
tions described in the following subsections. In all of them 
a simple damage function f (d) = e−d is used.

5.1  Uniaxial tension

A square plate with 1 cm edge length is subjected to a dis-
placement-driven pure tensile load as shown in Fig. 1. The 
neo-Hookean hyperelastic and damage material properties 
are reported in Table 2. Assume that the healing process is 
beginning from time t = 100 days , and Q

(
t�
)
= e−�t t

� with 
t� = t − 100 , where parameter �t describes the speed of mass 
degradation. According to (Comellas et al. 2016), a rela-
tively large bulk modulus is chosen compared with the shear 
modulus.

5.1.1  G&R constant model

The performance of G&R constant model is firstly tested by 
calculating the variation of average Cauchy stress along the 
right side of plate with time as shown in Fig. 2. Figure 2a 
shows the influence of the degradation speed parameter �t in 
the G&R constant model, where a larger �t causes a higher 
stress, meaning that a faster degradation (mass decrease) 
leads to a higher level of healing. Figure 2b investigates the 
influence of the healing fraction kg . The following values are 
tested: kg = 0.8 , 1.0 and 1.5 , respectively. Firstly, the G&R 
constant model simulates the increase in stress in the pro-
cess of healing. Secondly, low kg values cause higher stress, 
as both kg < 1 and Q̇(t) < 0 will lead �̇�(s) < 0 according to 
Eq. (13), so a smaller inelastic deformation �g is produced 
in Eq. (9), and as a constant total displacement loading is 
applied, a larger elastic deformation �e is obtained in Eq. (3), 
and finally, the obtained stress is higher than the one with 
kg ≥ 1.

5.1.2  G&R homeostatic model

Figure 2c, d illustrates the stress curves for the G&R homeo-
static model, where the influence of the homeostatic stress 
value �h and of the gain parameter k� is shown in Fig. 2c, 
d, respectively. Considering that the homeostatic stress was 
consistent with stresses commonly applied to soft tissues 
in vivo (Simo and Ju 1987; Humphrey et al. 2014), here we 
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set the values of homeostatic stresses lower that the maxi-
mum stress reached after damage, so that G&R worked at 
reducing this stress in order to converge toward the homeo-
static stress, consequently inducing healing. The results 
show the convergence of the stress toward the homeostatic 
stress after healing for all the tested cases. A larger gain 

parameter k� results in a faster convergence. Furthermore, 
the sensitivity of the size of time step Δt is reported in 
Fig. 2e, and the results show that different Δt values have no 
significant influence on the convergence toward the homeo-
static state.

Table 1  Different steps of the 
numerical implementation at the 
Gauss point level for gradient-
enhanced continuum healing 
models

Fig. 1  Geometry and displace-
ment applied for the uniaxial 
tension case study
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5.1.3  Comparison of the G&R models with the non‑local 
Comellas model

The G&R constant model, the G&R homeostatic model and 
the non-local Comellas model are compared in Fig. 3. It 
is shown that both the G&R constant model and the G&R 
homeostatic model yield a nonzero stress as the displace-
ment loading is entirely unloaded as shown in Fig.  3a. 
Accordingly, the temporal variations of elastic and inelas-
tic deformations are shown in Fig. 3b, in which nonzero 
inelastic deformations obtained in the G&R constant model 
and the G&R homeostatic model are shown. Comparatively, 
there is no inelastic deformation for the non-local Comellas 
model.

5.2  Open‑hole plate

The second numerical example is a rectangular plate with 
a hole, loaded under displacement-driven conditions. The 
geometry and the loading curves are shown in Fig. 4. The 
neo-Hookean hyperelastic and damage material properties 
are reported in Table 3. Due to the symmetry, only a quarter 
of the plate is analyzed. For the material parameters, as in 
Example 1, a relatively large bulk modulus is chosen com-
pared with the shear modulus (Comellas et al. 2016).

5.2.1  G&R constant model

The stress curves shown in Fig. 12a prove the mesh inde-
pendence for the G&R constant model. The evolution of the 
time-dependent damage function H(t) is shown throughout 
the healing process in Fig. 5 for two different mesh sizes. 
Again, the results are fully mesh independent.

The influence of non-local effects of the G&R constant 
model is investigated in Fig. 6 with different cd values. cd 
is the parameter representing the effect of internal length 
scales, or more specifically as the parameter related to the 

average length of microstructural components in the soft tis-
sues. The results show that a higher cd leads to smaller dam-
age and a narrower damage zone during both the damage and 
healing process. This can be explained by the larger width of 
the ‘activated zone’ in case of higher cd in the model (Dimi-
trijevic and Hackl 2008, 2011); hence, the changes in the 
damage variable will affect a larger region, which is related 
to larger internal length scales of the soft tissue.

5.2.2  G&R homeostatic model

For the G&R homeostatic model, the stress curves and the 
evolution of damage distribution with time are shown in 
Figs. 12b and 7, respectively, again revealing a very good 
mesh independence, the homeostatic stress is set to a value 
of 0.000815 MPa for the average Cauchy stress at the right 
side of plate, which represents stress at time t = 40 days . 
Unlike the previous results obtained with the G&R constant 
model, the stress decreases and tends to converge toward a 
target value during healing, which represents the homeo-
static state.

The influence of non-local effects in the G&R homeo-
static model is also investigated in Fig. 8. The effect of 
internal length scales is shown with different cd values. The 
decrease in the damage region is shown during healing with 
a larger value of cd.

Figure 9 illustrates the influence of values of homeostatic 
stress and the level of damage, respectively. In Fig. 9a, the 
results show good convergence to the state of homeostatic 
stress for healing with three different prescribed �h . Moreo-
ver, the ability of the G&R homeostatic model to simulate 
different levels of damage/healing is analyzed by varying 
the penalty parameter �d in the non-local damage model 
as shown in Fig. 9b. It is shown that although the G&R 
homeostatic model is capable of simulating the process of 
convergence of stress to the homeostatic state for �d = 0.004 
and �d = 0.006 , a simulation failure occurs for �d = 0.002 
with more damage contained. The reason of computational 
failure could be that a more severe damage causes a more 

Table 2  Hyperelastic, damage 
and healing parameters used 
in the homogeneous uniaxial 
tensile test example

Type Description Symbol Values Units

Hyperelastic Shear modulus �e 1.5 MPa
Bulk modulus �e 75.0 MPa

Damage Saturation parameter �d 1.0 MPa−1

Damage threshold �d 8.0 MPa
Healing G&R constant model kg [0.8, 1.0, 1.5] –

�t [0.001, 0.005, 0.01] –
G&R homeostatic model k� [0.005, 0.01, 0.02] –

�t 0.01 –
Non-local Comellas model �̇� 0.01 Days−1

� 0.0 –
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inhomogeneous concentrated stress field; this could cause 
some numerical difficulty in the computation of healing by 
coupling the numerical approximation in both spatial and 
time domains.

5.2.3  Non‑local Comellas model

Similarly, the response obtained with the non-local Comel-
las model is shown in Figs. 10, 11 and 12c. The average 
stress curves and the distribution of damage fields f (d) 
show that there is no mesh dependence, and the non-local 
approach has permitted to overcome the mesh depend-
ence which was reported in Comellas et al. (2016). Similar 

Fig. 2  Stress curves obtained in the homogeneous uniaxial tension 
example. a Influence of the degradation speed parameter �t for G&R 
constant model. b Influence of the healing parameter kg for G&R con-
stant model for G&R constant model. c Influence of the homeostatic 

stress �h for G&R homeostatic model. d Influence of the gain param-
eter k� for G&R homeostatic model. e Influence of time step size for 
the G&R homeostatic model 
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results as for the G&R healing models are found for the 
Comellas model by using different cd values, as shown in 
Fig. 11.

5.3  Balloon angioplasty case study

The third case study is related to damage induced by bal-
loon angioplasty and its healing for a long-time scale. The 
two-dimensional geometry shown in Fig. 13a was previously 
established by Badel et al. (2014), inspired from histological 
pictures of epicardial coronary arteries from Viles-Gonzalez 
et al. (2011). The coronary artery is assumed to consist of a 
single medial layer containing an atherosclerotic plaque, and 
the balloon used for angioplasty is modeled as a thin circular 
structure whose diameter increases during the angioplasty 
process. The medial layer and the plaque are modeled based 
on a neo-Hookean hyperelastic model, and the balloon is 
modeled with a linear elastic model. The geometry and the 
FEM mesh are shown in Fig. 13b, and the material param-
eters are reported in Table 4.

The only boundary conditions to be assigned are the 
nodal displacements of the balloon. A radial displacement is 
imposed to each node from its initial position, di = 0.5 mm , 
to give a final deformed diameter, df = 1 mm . In the fol-
lowing, we use variable � =

(
d − di

)/(
df − di

)
 , where d is 

the current diameter of the balloon, as a gauge of the infla-
tion progress. The balloon inflation is applied from time 
t = 0 to t = 100 days , and the healing is set to begin from 
time t = 100 days and the boundary condition is set as con-
stant. Note that all the degrees of freedom of the balloon 
are prescribed as Dirichlet boundary conditions. Therefore, 
the response of the balloon is completely independent of 
the material behavior assigned to it, so we assigned a linear 
elastic model for the balloon.

The process from damage to healing is simulated dur-
ing balloon angioplasty for the same three models as in 
previous sections. The final deformation of balloon is set 
as df = 1 mm for all three models. The results are shown 

Fig. 3  Comparison of G&R constant model, the G&R homeostatic 
model and the non-local Comellas model. a Stress–time curves; b 
temporal variations of the deformation gradient

Fig. 4  Geometry and displacement applied for the open-hole rectangular plate case study
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in Fig. 14. All three models successfully simulated medial 
healing after damage, although the results are slightly dif-
ferent in the distribution of damage fields. Comparatively, 
the effects of healing are more pronounced for the G&R 
constant model and for the non-local Comellas model, but 
the G&R homeostatic shows a more stable process due to 
the homeostatic condition.

Figure 15 illustrates the effect of different level of 
balloon inflation setting three different diameters (a) 
df = 0.9 mm (b) df = 1.0 mm and (c) df = 1.1 mm by using 
the G&R constant model. The first and second columns 
show two damage fields H(t) in the damage process dur-
ing the balloon dilation, illustrating that more damage 
is induced under a larger dilation size. The third and 

fourth columns show again the two damage fields H(t) 
throughout the healing process, in which a recoverable 
damage can be observed, and an obvious change of geom-
etry of the media layer can be found for case (c) at time 
t = 200 days . This shows the ability of the proposed model 
in simulating the healing process along with the induced 
growth deformation.

6  Conclusions

We have developed two new gradient-enhanced continuum 
healing models for soft tissues, including the gradient-
enhanced G&R healing model and the gradient-enhanced 

Table 3  Hyperelastic, damage 
and healing parameters used 
in the open-hole tensile test 
example

Type Description Symbol Values Units

Hyperelastic Shear modulus �e 0.1 MPa
Bulk modulus �e 5.0 MPa

Damage Saturation parameter �d 1.0 MPa−1

Damage threshold �d 0.002 MPa
Regularization Degree of regularization cd 0.1, 1.0, 1.0 MPa mm2

Penalty parameter �d [0.002, 0.004, 0.006] MPa
(Non-)local switch �d 1.0 –

Healing G&R constant model kg 1.0 –
�t − 0.001 –

G&R homeostatic model k� 0.1 –
�t − 0.001 –

Non-local Comellas model �̇� 0.015 Days−1

� 0.0 –

Fig. 5  Evolution of the damage fields throughout the healing process for the non-local G&R constant model. a Results with a coarse mesh of 
286 elements. b Results obtained with a fine mesh of 793 elements
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version of the healing model proposed by Cormellas et al. 
(2016) using Abaqus with UEL, and we have shown their 
potential for applied problems.

A first advantage of the two healing models is their abil-
ity to simulate the healing process non-locally by introduc-
ing the gradient-enhanced variable. Numerically, a good 

mesh independence is achieved in the simulation of heal-
ing, even when damage is concentrated in a narrow region.

For the gradient-enhanced G&R healing model, the time-
dependent inelastic growth is introduced into the conven-
tional gradient-enhanced damage model to describe the pro-
cess of G&R in healing in the framework of the temporally 

Fig. 6  Evolution of the damage fields throughout the healing process for the non-local G&R constant model. a Results with cd = 0.1 . b Results 
with cd = 10

Fig. 7  Evolution of the damage fields throughout the healing process for the non-local G&R homeostatic model. a Results with a coarse mesh of 
286 elements. b Results obtained with a fine mesh of 793 elements
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homogenized growth model (Cyron et al. 2016). In this 
paper, two approaches to determine the rate of mass pro-
duction are discussed, including the G&R constant model 
and the G&R homeostatic model, and the growth direction is 
determined according to local principal stress directions. As 
shown in numerical examples where the effects of the G&R 
parameters on results are discussed, it seems that the level of 
damage before the beginning of healing could be a sensitive 
factor for the convergence toward homeostasis.

Moreover, the difficulty of mesh dependence in original 
Comellas healing model (Comellas et al. 2016) has been 
well overcome by virtue of the gradient-enhanced term. 
Nevertheless, the gradient-enhanced Comellas have not 
considered the influence of inelastic growth deformation in 
healing, in comparison with the gradient-enhanced G&R 
healing models.

Aiming to approach the applied problems, healing after 
damage in balloon angioplasty is simulated by the proposed 
models in the last numerical example, and the influence of 
the inflation diameter on healing is investigated. The pro-
posed models have shown good potential for approaching 
the healing for damaged soft tissues.

The present model is limited to 2D cases and to isotropic 
hyperelastic models. However, as collagen fibers are essen-
tial in healing of soft tissue, the development of a 3D aniso-
tropic model is currently under progress in order to address 
more realistic applications. Besides, the use of UEL presents 
some limitations such as the definition of slave surfaces in 
contact analyses. Therefore, self-contact problems cannot be 
addressed with the current model.

Fig. 8  Evolution of the damage fields throughout the healing process for the non-local G&R homeostatic model. a Results with cd = 1 . b Results 
with cd = 10

Fig. 9  Evolution of the damage fields throughout the healing process 
for the non-local G&R homeostatic model. a Results with different 
homeostatic stress values. b Results with different levels of damage/
healing
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The determination of material parameters is also an 
important issue for the applications of the present model. 
Generally, hyperelastic parameters can be identified from 
experimental data and an abundant literature exists on this 
topic (Avril 2017). But the identification of other param-
eters, relative for instance to internal length scales, such 
as the gradient parameter cd and the penalty parameter �d 
will require inverse analyses to be deduced for practical 
applications

In summary, in this manuscript, two gradient-enhanced 
constitutive healing models for biological soft tissues 
including non-local variables have been presented. Impor-
tant developments are currently under progress for con-
sidering the anisotropic constitutive and extension to 3D 
for more practical applications. The development of a 3D 
anisotropic model will permit simulating arterial healing 
after surgical procedures such as angioplasty and stent 
deployment. This will require defining realistic geometries 

Fig. 10  Evolution of the damage fields throughout the healing process for the non-local Comellas model. a Results with a coarse mesh of 286 
elements. b Results obtained with a fine mesh of 793 elements

Fig. 11  Evolution of the damage fields throughout the healing process for the non-local Comellas model. a Results with cd = 1 . b Results with 
cd = 10
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Fig. 12  Plate with a hole. Average Cauchy stress curves for 286 and 793 elements of three different non-local models. a G&R constant model, b 
G&R homeostatic model and c Comellas model

Fig. 13  a Reference model: 
geometry, dimensions and 
boundary conditions; b FEM 
mesh
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Table 4  Material parameters 
used in the balloon angioplasty 
case study (Cyron and 
Humphrey 2014)

Type Symbol Description Values Units

Hyperelastic
Medial layer �e Shear modulus 200 kPa

κe Bulk modulus 2.0 MPa
Plaque μp Shear modulus 20 kPa

κp Bulk modulus 34 kPa
Balloon μb Shear modulus 0.5 MPa

κb Bulk modulus 2.0 MPa
Damage
Medial layer ηd Saturation parameter 1.0 MPa−1

κd Damage threshold 5.0 kPa
Regularization
Medial layer cd Degree of regularization 1.0 MPa mm2

βd Penalty parameter 5.0 kPa
γd (Non-)local switch 1.0 –

Healing
G&R constant model kg Gain parameter 1.0 –

ηt Survive function parameter − 0.001 –
G&R homeostatic model kσ Gain parameter 0.05 –
Non-local Comellas model �̇� Healing rate 0.015 Days−1

ξ Un-recover percentage 0 –

Fig. 14  Evolution of the damage fields throughout the healing process for three different non-local models. a Comellas model, b G&R constant 
model and c G&R homeostatic model 
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and appropriate constitutive models to be able to predict 
the long-term adaptation of arteries to these invasive pro-
cedures. Available information about the microstructure of 
concerned arteries will permit defining the internal length 
scales.
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