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Abstract In simulation of cardiovascular processes and
diseases patient-specific model parameters, such as constitu-
tive properties, are usually not easy to obtain. Instead of using
population mean values to perform “patient-specific” simu-
lations, thereby neglecting the inter- and intra-patient vari-
ations present in these parameters, these uncertainties have
to be considered in the computational assessment. However,
due to limited computational resources and several short-
comings of traditional uncertainty quantification approaches,
parametric uncertainties, modeled as random fields, have
not yet been considered in patient-specific, nonlinear, large-
scale, and complex biomechanical applications. Hence, the
purpose of this study is twofold. First, we present an uncer-
tainty quantification framework based on multi-fidelity sam-
pling and Bayesian formulations. The key feature of the pre-
sented method is the ability to rigorously exploit and incor-
porate information from an approximate, low fidelity model.
Most importantly, response statistics of the corresponding
high fidelity model can be computed accurately even if the
low fidelity model provides only a very poor approximation.
The approach merely requires that the low fidelity model and
the corresponding high fidelity model share a similar sto-
chastic structure, i.e., dependence on the random input. This
results in a tremendous flexibility in choice of the approx-
imate model. The flexibility and capabilities of the frame-
work are demonstrated by performing uncertainty quantifi-
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cation using two patient-specific, large-scale, nonlinear finite
element models of abdominal aortic aneurysms. One consti-
tutive parameter of the aneurysmatic arterial wall is mod-
eled as a univariate three-dimensional, non-Gaussian ran-
dom field, thereby taking into account inter-patient as well
as intra-patient variations of this parameter. We use direct
Monte Carlo to evaluate the proposed method and found
excellent agreement with this reference solution. Addition-
ally, the employed approach results in a tremendous reduc-
tion of computational costs, rendering uncertainty quantifi-
cation with complex patient-specific nonlinear biomechani-
cal models practical for the first time. Second, we also ana-
lyze the impact of the uncertainty in the input parameter
on mechanical quantities typically related to abdominal aor-
tic aneurysm rupture potential such as von Mises stress, von
Mises strain and strain energy. Thus, providing first estimates
on the variability of these mechanical quantities due to an
uncertain constitutive parameter, and revealing the potential
error made by assuming population averaged mean values in
patient-specific simulations of abdominal aortic aneurysms.
Moreover, the influence of correlation length of the random
field is investigated in a parameter study using MC.

Keywords Abdominal aortic aneurysm · Uncertainty
quantification · Bayes · Monte Carlo · Random fields

1 Introduction

The assessment of biomechanical factors of cardiovascu-
lar and other diseases using computational tools has led to
tremendous progress in the understanding of the underlying
processes and causes leading to severe medical conditions
and often death. Furthermore, these computational models
can offer new, unprecedented diagnostic and predictive pos-
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sibilities, presenting a promising avenue to further advance
in medical health care. Hence, the improvements achieved in
the last decade have fueled the desire for the application of
these tools in clinical settings and medical research.

However, most computational models require a multitude
of patient-specific data and input parameters to accurately
predict the relevant patient-specific biomechanical factors.
Many of these aforementioned input parameters are unavail-
able or can only be estimated in some way. Often when truly
patient-specificdata are inaccessible assumptions about these
parameters aremade, or population-averagedvalues are used.
The difference between the actual patient-specific values and
any assumed or averaged values in the input parameters in
a deterministic model of course translates to uncertainty or
potential error in the computed quantities.

For instance, in the context of computational models for
biomechanical problems, already the process to get from
medical image data to a discretized model is a potential
source for uncertainty and error in the computational geom-
etry. Additionally, this task is often also dependent on the
operator performing the segmentation and meshing process
and thus not objective and reproducible. The differences in
model geometry of course translate into differences in numer-
ical results (Moore et al. 1997). Furthermore, the resolution
of state-of-the-art clinical CT or MR scanners often is not
high enough to determine certain important geometrical fea-
tures. An even more severe problem is that patient-specific
physical parameters, such as constitutive properties, almost
never can be measured accurately. Many of these parameters
intrinsically vary within and between patients and are also
significantly affected by lifestyle, age, and diseases, which
lead to further substantial variations. Moreover, as pointed
out previously by Chen et al. (2013), uncertainty is intro-
duced also by the often ambiguous choice of mathematical
models and applied boundary conditions, which will affect
the simulation results.

Let us consider, e.g., 3D models of the human vasculature
in the following. As the wall thickness of blood vessels can
generally not be obtained frommedical images, assumptions
about thewall thickness and its regional distribution aremade
when creating structural models of the vessel wall. Espe-
cially in cases where the patient suffers from a cardiovascu-
lar disease like arteriosclerosis or abdominal aortic aneurysm
(AAA), vessel walls are subject to pathological changes
resulting in a wall thickness deviating strongly from pop-
ulation mean values and exhibiting large spatial intra-patient
variations (Reeps et al. 2012; Raghavan et al. 2006, 2011).

Another source of uncertainty are the unknown patient-
specific constitutive properties of the vessel wall. As in the
case of the wall thickness, the constitutive properties of the
vessel wall are severely affected by advancing cardiovascu-
lar diseases. As shown in many ex vivo studies, the non-
linear material properties of an aneurysmatic arterial wall

are subject to large inter- and intra-patient variations, and
constitutive parameters determined by tensile tests vary sig-
nificantly within a patient, patient cohort, and experimental
setup in the various published studies (Reeps et al. 2012;
Marini et al. 2011; Raghavan et al. 2006, 2011; Vande Geest
et al. 2006b, c; Raghavan et al. 1996; Vallabhaneni et al.
2004; Thubrikar et al. 2001). Even in non-arteriosclerotic
human aorta, the stiffness parameters reported in the liter-
ature easily span one order of magnitude (Roccabianca et
al. 2014). Despite the progress that has been made regard-
ing in vivo characterization of constitutive properties based
on pulse wave velocity or local changes in diameter of the
aorta (Schulze-Bauer and Holzapfel 2003; Astrand et al.
2011; Vappou et al. 2010), current in vivo approaches are not
yet able to detect short-scale spatial variations. Furthermore,
none of the above-mentioned approaches has been success-
fully applied and validated for, e.g., AAA or human aorta by
tensile tests.

While the exact knowledge of patient-specific values for
wall thickness and constitutive parameters may be irrelevant
for pure computational fluid models, this is not the case for
solid or fluid–solid interaction models. Therefore, in absence
of truly patient-specific parameters, it is extremely impor-
tant to be aware of the uncertainty in population averaged or
assumed patient-specific model parameters. In lack of true
patient-specific values, these uncertainties should be incor-
porated into the computational model to quantify the impact
of the uncertainty on the computed results and to obtain more
reliable predictions or worst-case scenarios. The identifica-
tion and quantification of the uncertainties in the computa-
tional results will help to access the margin of error of simu-
lation results due to uncertain model parameters, thus allow-
ing estimates on the accuracy of deterministicmodels. This is
crucial if computational models are, ultimately, to be used for
diagnosis of cardiovascular diseases, or to obtain recommen-
dations for prevention and treatment of individual patients. A
prominent example is the patient-specific rupture risk strat-
ification of AAA using finite element models to determine
whether the patient should undergo elective surgery. Addi-
tionally, the results could help to improve computational
models and provide directions for future research, as the
major contributors to the output uncertainty are identified.

In order to achieve such a quantification of uncertain-
ties, two major steps are required. First, a suitable proba-
bilistic description of the uncertain model parameters must
be found, and second, an appropriate approach to propa-
gate the uncertainties through the model is needed. As far
as uncertain material properties and arterial wall thickness
are considered, two options exist to model these uncertain-
ties in a probabilistic fashion. The simpler approach models
the constitutive parameters as a spatially constant random
variable, which follows a prescribed probability distribution,
while thus neglecting spatial variability. The other option,
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which also accounts for spatial variations, are so-called ran-
dom fields (Vanmarcke 2010; Shinozuka and Jan 1972). An
essential feature of random fields is the ability to capture the
spatial correlation, encoded in the autocorrelation function
(ACF), of a varying property at different locations.

In either case, the resulting computational model is no
longer deterministic, and hence, a stochastic problem must
be solved. Various approaches to solve this kind of stochas-
tic boundary value problem have been proposed in recent
decades (Spanos and Zeldin 1998; Stefanou 2009; Panayirci
and Schuëller 2011; Xiu 2010; Eldred 2009). However, only
few approaches scale to large nonlinear problems with mod-
erate to high stochastic dimension. The majority of the pro-
posed approaches fall into one of the following two cate-
gories. The first is based on some form of Polynomial Chaos
Expansion (PCE) (Xiu 2010; Ghanem and Spanos 2003;
Xiu 2009). The major disadvantage of solution schemes
based on PCE is the curse of dimensionality, which ren-
ders these approaches infeasible for problems with high sto-
chastic dimension as is the case when considering random
fields. The second broad class of algorithms is based on sam-
pling approaches like Monte Carlo (MC) and all its variants
(Metropolis and Ulam 1949; McKay et al. 1979; Bourgund
and Bucher 1986; Cliffe et al. 2011; Pellissetti and Schuëller
2009; Pradlwarter et al. 2007; Olsson and Sandberg 2002;
Neal 2001; Hurtado and Barbat 1998). As reported by Ste-
fanou (2009), direct MC might still be the only universal
approach for uncertainty quantification (UQ) in complex sys-
tems, because it only requires a deterministic solver and the
ability to draw samples from the distributions of the uncer-
tain input parameters. However, while the stochastic prob-
lem at hand can in principle be solved using direct MC, the
computational costs associated with standardMC render this
approach infeasible for realistic, nonlinear and hence quite
complex biomechanical models, as MC requires typically
several thousand model evaluations.

In this study, we present a framework which incorporates
a probabilistic description of spatially varying model para-
meters, based on experimental data. Moreover, this frame-
work allows for the efficient solution of the resulting sto-
chastic boundary value problemusing approximatemodels in
combination with nonparametric Bayesian regression (Kout-
sourelakis 2009).Wedemonstrate that this approach is able to
reproduce theMC reference solution at a fraction of the com-
putational costs and delivers accurate results even if strongly
simplified approximate models are used. Thus, the compu-
tational costs of UQ can be reduced to an acceptable level
even for large-scale, nonlinear, and complex biomechanical
problems with uncertainties modeled as random fields.

As a first step toward full UQ incorporating all rele-
vant uncertain model parameters in patient-specific biome-
chanics, we exemplarily consider two patient-specific AAA
geometries and the uncertainty in one of the constitutive para-

meters of the aneurysm wall. The constitutive parameter is
modeled as random field, since our experimental data sug-
gest that the chosen parameter exhibits high inter- and intra-
patient variations. We present the method and demonstrate,
through a proof of concept study, the impact of uncertainties
present in the constitutive parameter in the arterial wall on
mechanical quantities usually related to AAA rupture poten-
tial, such as von Mises stress/strain or strain energy density.
In addition, we perform a parameter study to investigate the
influence of the correlation length of the random field using
direct MC.

Thus, the purpose of this work is twofold. On the one
hand, a novelUQapproach is presented, and its efficiency and
accuracy are shown for large-scale nonlinear models. On the
other hand, in addition to the methodology presented in this
paper, the uncertainties in the simulation results of patient-
specificAAAmodels are quantified, and the ramifications for
patient-specific computational assessment of AAA rupture
potential are discussed.

To the knowledge of the authors, this is the first time that
UQ with respect to a spatially correlated random quantity
is performed employing nonlinear patient-specific finite ele-
ment models. Hitherto, research regarding UQ in cardiovas-
cular mechanics was limited to either idealized geometries
and uncertainties modeled as independent random variables
rather than correlated stochastic processes. For instance,
Sankaran andMarsden (2011) investigated idealized geome-
tries of AAAs considering parametric uncertainties such as
the radius, while Chen et al. (2013) and Xiu and Sherwin
(2007) studied the effect of uncertain parameters in one-
dimensional models of the arterial network. Although we
consider patient-specific models of AAA, we stress the fact
that our approach is very general and can be applied to a
wide range of problems and is by no means limited to this
particular application.

The remainder of this paper is structured as follows. In
Sect. 2, the stochastic boundary value problem and the prob-
abilistic model used to describe the random and spatial vari-
ations of the constitutive parameter are provided. Section 3
summarizes themulti-fidelityMC approach utilized here and
highlights important aspects. The described methodology is
applied to two large, nonlinear, patient-specific finite element
models of AAAs, and the results of these model problems
are discussed in Sect. 4. By means of a simple proof concept
example, we show in Sect. 5 that geometric uncertainties can
be considered in addition to the constitutive uncertainty as
well. Conclusions are drawn in Sect. 6.

2 Stochastic problem formulation

The material properties of AAAs are subject to large inter-
and intra-patient variations in all of the material properties
(Reeps et al. 2012; Raghavan et al. 2011). Hence, we use the
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random field approach to formulate a stochastic material law
for the aneurysmatic arterial wall. These random fields are
constructed based on our own experimental data from ten-
sile tests. Reliable information about the spatial distribution
and correlation of constitutive properties in AAA is scarce;
hence, some auxiliary assumptions have to be made for the
characterization of the field. Nevertheless, the assumptions
regarding the probabilistic characteristics of the random field
are far less restrictive than those typically made in a deter-
ministic problem settingwhere the variations or uncertainties
in the model parameters are commonly ignored entirely. In
addition, the sensitivity of assumptions on the results can also
be tested by the proposed approach.

2.1 Probabilistic constitutive model

A homogenous, univariate, lognormal three-dimensional
random field is used to describe the inter- and intra-patient
variations of one constitutive parameter of a hyperelastic con-
stitutive law for the AAA wall. More specifically, we use the
hyperelastic constitutive model proposed in (Raghavan and
Vorp 2000) as a starting point for our probabilistic description
of the arterial wall:

Ψ = α( Ī1 − 3) + β( Ī1 − 3)2 + κ

η2
(η ln J + J−η − 1) (1)

where Ī1 is the first invariant of the isochoric Right-Cauchy-
Green strain tensor C̄ and J = det F is the determinant of the
deformation gradient F. The parameters of the isochoric part
α and β can be determined by fitting the strain energy func-
tion given above to experimentally measured stress-stretch
curves as we precisely described in (Reeps et al. 2012). A
fixed bulk modulus of κ = 2α

1−2ν with ν = 0.49 was used
throughout this work and η = −2.

The parameters α and β were fitted for n = 142 tensile
test specimens harvested in open surgery using the method-
ology described in (Reeps et al. 2012). Figure 1 depicts
the histograms of the constitutive parameters α and β and
reveals that the intra-patient variations are of the same order

of magnitude as the inter-patient variations. It was found that
β exhibits a larger variance as well as a greater variation
between individual patients as compared to α. Hence, as a
first step towards a fully probabilistic constitutive framework,
we choose to model only the parameter β as a random field
leaving the remaining constitutive parameters α = 0.059
and κ = 5.9MPa deterministic population-averaged mean
values.

2.1.1 Generation of non-Gaussian random fields using
spectral representation and translation process theory

Solving stochastic finite element problemswith uncertainties
modeled as random fields using a sampling-based approach
requires the computation of discretized sample functions,
often referred to as realizations, of the random field. The
spectral representation method in combination with transla-
tion process theory is a widely used approach to generate
these sample functions based on a large number of trigono-
metric functionswith independent randomphase angles (Shi-
nozuka and Jan 1972). First, a Gaussian random field is cre-
ated with the spectral representation method, which is than
mapped into a non-Gaussian field using translation process
theory (Grigoriu 1995).

In order to use the spectral representation method, two
probabilistic characteristics of the random field, the first-
order probability distribution and the autocorrelation func-
tion (ACF), need to be specified. Experimental data from ten-
sile tests was utilized to obtain an estimate for the probabil-
ity distribution using 142 tested specimens from 49 patients,
which provides empirical information on the range and rel-
ative frequency of β, see Fig. 1b. A lognormal probability
distribution for the parameter β, which is visualized in Fig.
1b, was obtained by applying the lognfit function in matlab
to this data.

pβ(β) = 1

βσ0
√
2π

e
− (ln β−μ)2

2σ20 ;

μ = 1.0857, σ0 = 0.9205.

(2)

Fig. 1 Constitutive parameters obtained from tensile testing. a Histogram of fitted α parameter. b Histogram of fitted β parameter
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As usual in stochastic mechanics (Charmpis et al. 2007),
our experimental data did not contain sufficient information
to fully determine the second characteristic of the random
field, the ACF. Based on the reasonable assumption that the
constitutive parameters vary smoothly in space, we chose the
squared exponential ACF

RNG(τ ) = σ 2
β e

−
( |τ |

d

)2
. (3)

The ACF describes the decay of covariance, which, for
homogenous fields, is solely based on the distance between
two points τ = x − x′ and a parameter called correlation
lengthd. The correlation length controls the distancebetween
two points above which the correlation between the values
at these points approaches practically zero. The parameter
σ 2

β denotes the variance of the lognormal distribution in (2).
The ACF can be transformed into the power spectral den-
sity (PSD) of the random field using the Wiener-Khintchine
relationship

SNG(κ) = 1

(2π)3

∫ ∞

−∞
RNG(τ )eiκ

T τdτ , (4)

where κ denotes the frequency vector. The PSD is needed to
create sample functions of the random field using the spec-
tral representation method (Shinozuka and Jan 1972). The
formula to generate sample functions of a univariate three-
dimensional Gaussian random field is given in (Shinozuka
and Deodatis 1996):

C(x) = √
2
N1−1∑
n1=0

N2−1∑
n2=0

N3−1∑
n3=0√

2SNG(κ1n1, κ2n2 , κ3n3)Δκ1Δκ2Δκ3[
cos

(
κ1n1x1 + κ2n2x2 + κ3n3x3 + ξ (1)

n1n2n3

)

+ cos
(
κ1n1x1 − κ2n2x2 + κ3n3x3 + ξ (2)

n1n2n3

)
(5)

+ cos
(
κ1n1x1 + κ2n2x2 − κ3n3x3 + ξ (3)

n1n2n3

)

+ cos
(
κ1n1x1 − κ2n2x2 − κ3n3x3 + ξ (4)

n1n2n3

)]
,

with Δκi = κiu
Ni

and κini = niΔκi . Herein, κiu represents
the cutoff frequency above which the PSD is of insignifi-
cant magnitude and can assumed to be zero. This thresh-
old depends on the correlation length of the field and has
to be adjusted accordingly. The ξ

(i)
n1n2n3 denote the indepen-

dent random phase angles which are uniformly distributed
between [0, 2π ].

Sample functions generated with (5) are asymptotically
Gaussian for N → ∞ by virtue of the central limit theorem.
However, a value of Ni = 64 yielded sufficiently accurate
results and hence was used throughout this work for the gen-
eration of sample functions. Using translation process theory,

the sample of the Gaussian random field can be transformed
into a sample of a non-Gaussian random field, the first-order
probability density of which obeys the desired lognormal
probability density function (PDF) (Grigoriu 1995)

G(x) = F−1
NG {Φ[C(x)]}, (6)

where F−1
NG is the inverse cumulative distribution function

(CDF) of the desired lognormal distribution as given in (2)
andΦ is the normal CDF of the underlyingGaussian process.
The nonlinear transform described above leads to a correla-
tion distortion in the sense that (6) not only changes the first-
order distribution of the stochastic process but also affects
the ACF. In order to account for this distortion as well as
any potentially arising incompatibilities between prescribed
CDF and ACF (Grigoriu 1995), we implemented a frame-
work based on (Shields et al. 2011), which allows to effi-
ciently generate sample functions of randomfields thatmatch
a prescribed PDF as well as the desired ACF. For a more
detailed in-depth overview over algorithms for generating
non-Gaussian random fields, the reader is referred to (Boc-
chini and Deodatis 2008) and (Stefanou and Papadrakakis
2007).

With the non-Gaussian random field described above, we
can extend the constitutive law for the aneurysmatic arte-
rial wall to incorporate the uncertainty in the parameter
β = β(x, ξ). Thus, β becomes a function of the location
and the random phase angles ξ

(i)
n1n2n3 , which are summarized

in the vector ξ for notational convenience. Once a sample
of random phase angles is drawn, a realization of the three-
dimensional random field is computed using (5) and (6). The
constitutive parameter β(x, ξ) can then be evaluated, e.g., at
the midpoint of each element in the AAA wall. This value
is then assigned to the element as local constitutive parame-
ter. The full stochastic version of the strain energy function,
which now depends on the location x as well as on the vector
of random phase angles ξ , is

Ψ (I1, J, x, ξ) = α( Ī1 − 3) + β(x, ξ)( Ī1 − 3)2

+ κ

η2
(η ln J + J−η − 1). (7)

Note that the methodology to create sample functions of ran-
domfields described above can also be used to considermod-
els with any other uncertain quantities, e.g., uncertain wall
thickness as later also used in one numerical example. In
case of multiple uncertain model parameters, each of those
can be modeled individually as random field using the for-
mulas given above, if the parameters are uncorrelated. How-
ever, if these parameters are correlated, cross-correlated ran-
dom vector fields should be used as a probabilistic model.
The generation of non-Gaussian cross-correlated random
vector fields is more involved and an area of ongoing and
vivid research. Several methods for the generation of such
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cross-correlated sample functions have for example been
proposed in (Popescu et al. 1998; Field and Grigoriu 2012;
Vořechovský 2008; Cho et al. 2013). In this work, we restrict
ourselves to random fields, which are not cross-correlated
for ease of exposition, and because at this stage, we can only
speculate about potential cross-correlations between differ-
ent model parameters. But while sample generation will be
more involved in the cross-correlated random vector field
case, we do not see a reason why the proposed Bayesian
multi-fidelity approach should not work as well.

2.2 Nonlinear stochastic boundary value problem

Having established a probabilistic description of the material
properties, the boundary value problem that has to be solved
becomes stochastic as well. For a formal description of the
problem, a probability space (Ω,F ,P) is defined, where
Ω is the event space, F a σ -algebra and P a probability
measure. The random phase angles now define a mapping
ξ : Ω → [0, 2π ]d , where d corresponds to the total num-
ber of phase angles used to generate sample functions of the
random field. Additionally, we ask that the random phase
angles obey a uniform distribution πξi = U(0, 2π). The sto-
chastic boundary value problem can then be written in the
most general form as

L(
u(x, ξ), ξ

) = f , (8)

with the nonlinear stochastic differential operator L depend-
ing on the vector ξ ∈ R

d of real random variables describ-
ing, e.g., the uncertainty in the material properties or the
wall thickness. Only deterministic boundary conditions and
body loads are considered in this work. The solution u(x, ξ)

of the problem, the displacement, thus becomes a stochastic
process as well, so do all quantities derived from the dis-
placement field or functions thereof, such as the von Mises
stress σvM, von Mises strain evM or strain energy density Ψ .
For the sake of brevity, we will refer to all quantities of inter-
est as y(x, ξ) in the following, and in addition, we will omit
the dependence on the location and random phase angles
for notational convenience. Apart from the expected value
E[y] or the coefficient of variation (COV) of the quantity of
interest, we are interested in obtaining the density πy(y) or
a response statistic like

Pr [y ∈ A] =
∫

1A(y(ξ))πξ (ξ)dξ , (9)

whereA is aπξ -measurable subset and 1A is the correspond-
ing indicator function. The case where A = {y|y > y0} is
of particular interest if we want to know the probability that,
e.g., the vonMises stress exceeds a certain threshold y0; thus,
(9) can be used to define a global or local failure probability.

3 Solution of the nonlinear stochastic boundary value
problem

Solving the stochastic boundary value problem using
sampling-based approaches like Monte Carlo (MC) only
requires a deterministic solver and the ability to draw samples
from the distribution πξ (ξ). The distribution of the quantity
of interest πy(y) can then be approximated by computing
a number (NSAM ) of random samples yi = y(ξ i ), with
ξ i ∼ πξ (ξ);which are sometimes also referred to as particles.
These particles are equipped with a weight Wi according to
their weight or probability, respectively. With slight abuse of
notation, the approximation of πy(y) can be computed by:

πy(y) ≈
NSAM∑
i=1

Wiδy(i) (y(ξ)) (10)

where δy(i) is the delta-Dirac mass. In case of direct MC
the weight of all samples is the same and equal to 1/NSAM.
Hence:

πy(y) ≈ 1

NSAM

NSAM∑
i=1

δy(i) (y(ξ)). (11)

The accuracy of theMC approximation depends on the num-
ber of independent samples NSAM with a probabilistic error
of O(1/

√
NSAM). In contrast to Polynomial Chaos Expan-

sion (PCE)-based approaches, the accuracy does not depend
on the stochastic dimension of the problem per se. How-
ever, for an accurate computation of the response statistics,
the number of required samples can be prohibitively large,
especially if one is interested in the tails of the distribu-
tion to evaluate failure probabilities. With a solution time
of current state-of-the-art models in computational biome-
chanics of the order of several CPU hours, direct MC with
several thousand samples is impractical for the application
to patient-specific models and large patient cohorts. The use
of advancedMC schemes like subset simulation, importance
sampling or sequentialMonteCarlo (SMC)methods can alle-
viate the computational burden (Neal 2001; Au and Beck
2001; Del Moral et al. 2006). However, the aforementioned
advanced sampling schemes are not applicable if one is inter-
ested in uncertainty quantification with respect to multiple
response quantities simultaneously, e.g., stresses and strains.

3.1 Bayesian multi-fidelity Monte Carlo

To reduce the computational effort, we implemented a frame-
work based on a multi-fidelity sampling strategy employing
the concepts proposed in (Koutsourelakis 2009; Kennedy
and O’Hagan 2000). The general idea is to incorporate
models with different levels of sophistication or fidelity in
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a sampling-based UQ approach. Roughly speaking, the sam-
pling is done on an inexpensive, approximate, low fidelity
model. Then, to account for the discrepancy between the low
fidelity and high fidelity solution, a probabilistic correction
factor is used, for the calculation ofwhich only very few eval-
uations of the expensive high fidelity model are required.

We start, given a particular systemof interest, by assuming
that we have two computational models for this system, an
accurate, expensive high fidelity model and a cheap approx-
imate version. The latter could be obtained, for instance, by
creating a much coarser discretization. Suppose that we are
interested in computing a particular quantity y(ξ) or rather
its probability density πy(y). Analogous to y(ξ), the quan-
tities of interest computed with the high fidelity model, we
will refer to the corresponding quantity and its density in
the approximate model as x(ξ) and πx (x) from here on. For
example, if y is the von Mises stress at a particular location
in the accurate model, x denotes the von Mises stress eval-
uated at the same spatial location in the low fidelity model.
Since the approximate model is cheap to evaluate, the den-
sity πx (x) can be readily approximated using any kind of
sampling algorithm such as direct MC or SMC.

If the low fidelity model and the high fidelity model have
the same stochastic structure, that is, they show a similar
dependence on the random input parameters, then there is a
statistical correlation between x and y, as shown in Fig. 2a.
This correlation can be exploited to accurately predict πy(y)
and does not at all depend on how good the low fidelity
model approximates a value in a deterministic sense. Let
us first consider the most extreme case, the one where we
have a direct one-to-one relationship between the two model
outputs x and y, e.g., as shown in Fig. 2b. It is obvious that it
would be easy to come up with a regression model that can
reproduce the interrelation between x and y. In combination
with πx (x) obtained from sampling, the calculation of πy(y)
is trivial. However, the relationship between x and y can also
be exploited if no strict deterministic relationship exists. A
noisy correlation as shown in Fig. 2a can also be exploited. If
the interrelation between the twomodel outputs is captured as

conditional probability density p(y|x), πy(y) can be readily
computed using

πy(y) =
∫

p(y|x)πx (x)dx . (12)

Hence, the methodology has two major requirements. First,
the approach of course requires an approximate model that,
while being computationally cheap, still provides sufficient
stochastic information about the quantity of interest. Sec-
ond, an efficient way to infer the conditional density p(y|x)
is needed. As proposed by Koutsourelakis (2009), we use a
Bayesian regression model to estimate the conditional den-
sity p(y|x). Therefore, we need a set of training samples{
(x j , y j )

}n
j=1, i.e., solutions of the low and high fidelity

model based on the same realizations of the random field
or the same set of random phase angles ξ j , respectively. The
Bayesian regression model then establishes a probabilistic
link between the low and high fidelity model, thus allowing
us to compute πy(y) using (12) or Pr [y ∈ A] if we rewrite
(9):

Pr [y ∈ A] = Ex [Pr [y ∈ A|x]]
=

∫
Pr [y ∈ A|x]πx (x)dx .

(13)

As a consequence, the regressionmodel, in combinationwith
the information from the low fidelity model, serves as a data
fit surrogate for the high fidelity model. Another interpre-
tation is that the regression model provides a probabilistic
correction factor to account for the discrepancy between high
and lowfidelity solution. In order to facilitate the understand-
ing for the reader, we want to provide a sketch of the basic
steps of the proposed approach before explaining the details
of the Bayesian regression and the computation of πy(y) in
the following subsections. Furthermore, wewant to highlight
some advantages of the proposed approach at this point.

Given an existing accurate, high fidelity model of our
system, an approximate low fidelity model has to be con-
structed. This approximate model should have a similar sto-

Fig. 2 Correlation between solution on low fidelity model x and high fidelity model y. a Noisy correlation. b One-to-one dependence
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Table 1 Basic steps of the proposed multi-fidelity MC scheme

Bayesian multi-fidelity MC

1. Construct a low fidelity and a high fidelity model of the system of interest, e.g., by creating a coarse and a fine discretization

2. Compute πx (x) by sampling of the cheap low fidelity model

3. Select a very small subset of the samples
{
x j

}n
j=1, fully covering the (empirical) support of πx (x)

4. Compute corresponding high fidelity solution
{
y j

}n
j=1 for the selected subset of samples

5. Use the samples
{
x j , y j

}n
j=1 from both models as training data for a Bayesian regression model to obtain a (probabilistic)

relationship between x and y, i.e., p(y|x)
6. Approximate πy(y) and Pr [y ∈ A] from p(y|x) and πx (x) using (12) and (13), respectively

chastic structure as the high fidelity model. However, it is not
necessary that the approximate model provides an accurate
approximation in a deterministic sense, as needed in deter-
ministic multi-level/grid schemes. The only prerequisite is a
mere statistical correlation between the high fidelity and the
approximatemodel,meaning that the approximatemodel and
the high fidelity model have a similar dependence on the ran-
dom input parameters. This very weak requirement offers a
tremendous flexibility in the choice of approximate models.
One way to create an approximate model is to simply use
a coarser discretization. Additionally, model reduction tech-
niques beyond coarsening the spatial and temporal discretiza-
tion can be used. As shown in one of our numerical exam-
ples in Sect. 4, the multi-fidelity MC approach also works
if a simpler physical model is used. In principle, also model
reduction techniques such as proper orthogonal decomposi-
tion could provide suitable low fidelity models.

In the second step of the proposed approach, the den-
sity πx (x) of our quantity of interest x has to be determined
using the low fidelity model. Thereby, the sampling can be
carried out using any kind of sampling algorithm and is by
no means limited to direct MC. Independent of the partic-
ular choice of the sampling algorithm computing πx (x) by
sampling is much cheaper as compared to sampling of the
high fidelity model. We used approximate models which are
up to a factor of 120 cheaper to compute than the corre-
sponding high fidelitymodel. In some cases, a factor of 1,000
can be achieved (Koutsourelakis 2009). Then, a small subset{
x j

}n
j=1 of all computed samples is selected. For an accurate

computation of πy(y), these samples should fully cover the
support of πx (x), i.e., cover the whole range of values that
x can take. Since usually only a particulate approximation
of πx (x) is available, this range is approximated by the sam-
ples with the smallest and largest x value, respectively. In
our experience, 100–200 evenly distributed samples which
cover the range of all possible x values yield excellent results.
Now the high fidelity solution

{
y j

}n
j=1 corresponding to the{

x j
}n
j=1 is computed. The dataset

{
(x j , y j )

}n
j=1 is then used

tofit aBayesian regressionmodel,whichprovides probabilis-
tic information on y given x . More specifically, the Bayesian
regression provides the desired conditional probability dis-

tribution p(y|x). Compared to the costs associated with the
computation of the high fidelity solution for the n samples,
the costs of fitting the regression model are negligible. While
we adopt the regressionmodel used in (Koutsourelakis 2009)
with minor modifications, the multi-fidelity MC approach is,
of course, not limited to this particular choice of regression
model. Once the conditional density p(y|x) is obtained, we
can use standard probability theory to compute πy(y). Over-
all, the proposed multi-fidelity MC approach can be summa-
rized in six steps, which are given in Table 1.

3.1.1 Bayesian regression model

Here, we will briefly outline the main concepts of the
Bayesian regression model proposed by Koutsourelakis
(2009), whichwe adopt andmodify by the addition of a linear
term. As mentioned before, one key aspect of the proposed
procedure lies in the efficient determinationof the conditional
density p(y|x) or conditional probability Pr [y ∈ A|x]. We
start by assuming an a priori unknown functional relationship
between x and y plus some additive Gaussian noise:

y(ξ i ) = f (x(ξ i ); θ) + σ Zi , Zi ∼ N (0, 1) (14)

with f (x, θ) being a combination of a first-order polynomial
and a sum of Gaussian kernel functions

f (x, θ) = a0 + a1x +
k∑
j=1

a je
{−τ j |ν j−x |2}, (15)

where the vector θ contains all parameters of the model

θ = {k, {a j }kj=0, {τ j }kj=2, {ν j }kj=2}. (16)

Thus, given the model parameters θ the conditional distrib-
ution p(y|x, θ , σ ) is Gaussian:

p(y|x) ≈ p(y|x, θ , σ ) = N ( f (x, θ), σ )

= φ(y − f (x, θ), σ ),
(17)

where φ(y − f (x, θ), σ ) is the Gaussian PDF defined as
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φ(y − f (x, θ), σ )

= 1√
2πσ 2

exp

{
− (y − f (x, θ))2

2σ 2

}
.

(18)

Following a fully Bayesian approach, all unknown parame-
ters are treated as random variables that are equipped with
a probability distribution. Hence, instead of trying to obtain
point estimates, the goal is to infer a probability distribu-
tions for each of the model parameters in θ and the variance
of the noise σ 2. This of course means that the conditional
distribution p(y|x), where the parameters θ are integrated
out, is not necessarily Gaussian, and more complex distrib-
utions can be obtained. Exploiting the statistical correlation
between the two quantities x and y, we can use the training
samples

{
(x j , y j )

}n
j=1 to infer the parameters θ of the regres-

sion model as well as the variance of the Gaussian noise σ 2

using Bayes’ rule

πθ ,σ 2(θ , σ 2) = p(θ , σ 2|(x1:n, y1:n))

= p((x1:n, y1:n)|θ, σ 2)p(θ)p(σ 2)

p(x1:n, y1:n)
∝ p((x1:n, y1:n)|θ)p(θ)p(σ 2).

(19)

After specifying the prior distributions p(θ) and p(σ 2),
Bayes’ rule modifies these prior distributions based on addi-
tional available information. In our case, this information is
provided by the training samples

{
(x j , y j )

}n
j=1. Using these

training samples, it is possible to evaluate how probable it is
to observe the data given a particular choice of θ and σ 2 using
the likelihood p((x1:n, y1:n)|θ, σ 2). The combination of the
prior and the likelihood gives rise to the posterior distribu-
tion of the parameters p(θ , σ 2|(x1:n, y1:n)) given the data.
The Bayes’ rule adjusts the distribution of the model para-
meters such that they are both probable under the prior and
compatible with the observed evidence or data.

3.1.2 Prior distribution

We adopted the choice of priors given in (Koutsourelakis
2009) for the model parameters. Algebraic rearrangement
and integration yield the following prior for the model para-
meters:

p(θ |s, aτ , aμ, a0, b0) = 1

(s + k)k+1

×
k∏
j=1

Γ (aτ + 1)

Γ (aτ )

aaτ
τ

τ
(aτ −1)
j

1

aμ

1

(aτ τ j + a−1
μ )(aτ +1)

(20)

× ba00
Γ (a0)

1

(2π)(k+2)/2

Γ (a0 + k
2 + 1)

(
b0 + 1

2

∑k
j=0 a

2
j

)a0+k/2+1 ,

where s = 1.0, aτ = 1.0, aμ = 0.01, a0 = 1.0, b0 = 1.0
were used throughout this work. Additionally, a I nv −
Gamma(a, b) prior was chosen for the variance σ 2 of the
Gaussian noise in (14). The hyperparameters a = 2 and
b = 10−6 where used throughout this work. As additive
Gaussian noise was assumed, the likelihood of the parame-
ters p((x1:n, y1:n)|θ, σ ) for n training samples

{
(x j , y j )

}n
j=1

is given by

p((x1:n, y1:n)|θ, σ ) =
n∏

i=1

p((xi , yi )|θ, σ )

= 1

(2π)n/2

1

σ n
exp

{
− 1

2σ 2

n∑
i=1

(yi − f (xi , θ))2
}
.

(21)

Onemajor advantage of this approach is that the complex-
ity of the Bayesian regression model, that is the number of
Gaussian kernels k in (15), is also a model parameter that is
inferred from the data. Hence, also highly irregular or non-
linear interrelations between x and y can be captured. More-
over, as the chosen Poisson prior for k ensures that sparse
regression models are favored, over-fitting is avoided and
the simplest regression model explaining the data is chosen
(Koutsourelakis 2009).

3.1.3 Computing the posterior

After generating the training samples, Bayes’ rule is applied
in an iterative manner inserting one pair of training samples
(x j , y j ) at a time, using the resulting posterior distribution as
a prior for the next pair. Naturally, as more training samples
are used, the influence of the prior diminishes. The poste-
rior density πθ ,σ 2(θ , σ 2) cannot be obtained as an analytic
expression; hence, it is approximated using Nparticles discrete
particles equipped with a weight proportional to their prob-
ability.

πθ ,σ 2(θ , σ 2) ≈
Nparticles∑
l=1

Wlδ
(θ ,σ 2)

l (θ , σ 2) (22)

The position and weights of these particles can be computed
using , e.g., advanced SMC schemes (Doucet and de Freitas
2001; Kemp 2003). In this work, we use the SMC algorithm
proposed in (Koutsourelakis 2009).

3.1.4 Computing solution statistics of the high fidelity
model

Having computed a particulate approximation of the poste-
rior density πθ ,σ 2(θ , σ 2), we can evaluate the conditional
distribution p(y|x). With the established quantitative prob-
abilistic relationship between x and y, the computation of
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an estimate of πy(y) or Pr [y ∈ A] is now straightforward.
A frequently used point estimate in Bayesian models is the
posterior mean. The posterior mean π̂y(y) can be computed
as:

π̂y(y) = Eθ ,σ,x [πy(y)]
=

∫
p(y|x, θ , σ )πx (x)πθ ,σ 2(θ , σ 2)dθdσ 2dx .

(23)

Using particulate approximations of πx (x) and the joint pos-
terior density πθ ,σ 2(θ , σ 2)

πx (x) ≈
NSAM∑
i=1

Wiδx (i) (x),

πθ (θ , σ−2) ≈
Nparticles∑
l=1

Wlδ(θ,σ )l (θ, σ 2),

(24)

the posterior mean π̂y(y) can be readily approximated with

π̂y(y) ≈
Nparticles∑

l

NSAM∑
i

W lW iφ(y − f (xi ; θ l), σl)), (25)

where φ denotes the Gaussian PDF as in (18). Obviously, we
can also evaluate the probability of y exceeding a specific
threshold y0. Given the model parameters θ and the variance
σ 2 the probability of y exceeding a specific threshold y0 can
be computed by

Pr [y < y0; θ , σ ] =
∫

qA(x; θ , σ )πx (x)dx (26)

with qA(x; θ , σ ) being defined as

qA(x; θ , σ ) =
∫ ∞

y0
p(y|x, θ , σ )dy

= Φ

(
f (x; θ) − y0

σ

)
,

(27)

whereΦ(x) is the standard normal CDF. The posterior mean
approximation of qA, computed using the particulate approx-
imation of πθ ,σ 2(θ , σ 2), can be used to produce an estimate
of the exceedance/failure probability for a specific value of x

q̂A(x) = Eθ ,σ [qA]

≈
Nparticles∑
l=1

WlΦ

(
f (x; θ l) − y0

σl

)
.

(28)

Substituting into (26) and using (24) yields an estimate for
the failure probability in the sense that on average, given the

training samples, the probability of y exceeding a threshold
y0 is given by:

Eθ ,σ [Pr [y < y0]] ≈
NSAM∑
i=1

Wi q̂A(xi ) (29)

Another advantage of the Bayesian approach is that in addi-
tion to point estimates like the posterior mean, confidence
intervals can be estimated from the posterior, quantifying
the uncertainties in the inferred parameters and hence in the
regression model. P-quantiles qA,p(x) for the failure proba-
bility can be readily estimated using:

Pr
[
qA(x) ≤ qA,p(x)

]

≈
Nparticles∑
i=1

Wi H
(
qiA(x) − qA,p(x)

)
= p,

(30)

where H denotes the heavy side function. We use the p = 1
and p = 99% quantiles qA,0.01 and qA,0.99 to provide confi-
dence intervals for exceedance probabilities in the following
sections.

4 Patient-specific examples

It is important to emphasize that the proposed approach is
very general and can be readily applied to a wide range of
problems. To demonstrate the capabilities of our approach,
we performUQusing two realisticAAAmodelswith patient-
specific geometries from our database, referred to as male67
and male71, as example for a large-scale nonlinear solid
mechanics problem with uncertain constitutive properties.
The geometry of the lumen and, if present, the intraluminal
thrombus (ILT) were reconstructed fromCT data. The model
male71 exhibits ILT while male67 does not. The wall thick-
ness cannot not be determined from the CT data and was
assumed to be a constant 1.57mm throughout the model.
While this assumption is made here to restrict ourselves
to uncertain material parameters for ease of discussion, we
stress that the presented method can also be applied to con-
sider other uncertainties, like uncertain regional variations in
wall thickness. To demonstrate this capability, we consider
a simpler generic example in a proof of concept study in the
next section. In this third example, we study an uncertain
constitutive property together with an uncertain wall thick-
ness, thereby both of those quantities are modeled as random
fields.

For the patient-specific examples, we use our existing
workflow, which is described in detail for the deterministic
case in (Reeps et al. 2010; Maier et al. 2010) and obtain high
fidelity finite element models with a mesh size of roughly
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Fig. 3 AAA finite element models based on patient-specific geome-
tries. a Male67 high fidelity model. b Male67 approximate model. c
Male71 high fidelity model. d Male71 approximate model. e Cross-

sectional view ofmale71 approximatemodelwith ILT. fCross-sectional
view of male71 approximate model without ILT

1mm, which are shown in Fig. 3a, c. These hybrid finite ele-
ment discretizations consist of 15,228 (male67) and 169,791
(male71) linear hexahedra-, wedge- and tetrahedra-shaped
elements, resulting in a problem size of 61,674 and 292,044
degrees of freedom, respectively. For the aneurysm male67,
an approximate model which is shown in Fig. 3b is con-
structed by coarsening the discretization. Using an element
size of approximately 3mm, the resulting coarser model
has 2,670 elements and 8,679 degrees of freedom. For the
aneurysm male71, two approximate models were created.
For the first approximate model, a coarser discretization and
a truncated geometry were used as depicted in Fig. 3d, e,
respectively, which results in 19,579 elements and 25,875
degrees of freedom. Secondly, to further reduce the compu-
tational effort, another approximate model was created using
model reduction in the sense that the ILTwas omitted entirely
in addition to a coarser discretization and geometric trunca-
tion, see Fig. 3d, f, respectively. Therein, the size reduces to

3,164 elements and 10,320 degrees of freedom. The reduc-
tion inmodel size and complexity yields a tremendous reduc-
tion in computational costs. For the aneurysms male67 and
male71, coarsening of the discretization andmodel reduction
yield an approximate finite element model that is between 10
and 50 times cheaper than the original high fidelity model,
respectively. The CPU time required to compute one sample
of the different models along with the numbers of degrees
of freedom is summarized in Table 2. We used a 6 core Intel
Xeon 3.2GHz workstation with 12 GB memory to estab-
lish the solution times of the different models. The simula-
tions were computed on one core, except the high fidelity
model of the male71 aneurysm, for the solution of which
four cores were used. We applied simple clamped bound-
ary conditions at all in- and outlets of the aneurysms and
imposed an orthogonal pressure follower load, to mimic the
load imposed by the blood pressure on the luminal surface of
the ILT. If no ILT is present, pressure is applied on the lumi-
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Table 2 Size of studied finite element models and solution times for
one sample

Model Solution time
(CPU seconds)

Degrees
of freedom

Male67 high fidelity 2,000 61,674

Male67 approximate 195 8,679

Male71 high fidelity 10,800 292,044

Male71 approximate
with ILT

400 25,875

Male71 approximate
without ILT

215 10,320

nal surface of the vessel wall. The shear stresses, induced by
the blood flow, are negligible as compared to the pressure
load. Hence, a full fluid–structure interaction simulation is
not required. Since the geometries of the aneurysms were
obtained from CT images, the in vivo imaged configuration
is not stress free, but represents a loaded spatial configura-
tion. In order to obtain meaningful results, this “prestressed”
state has to be accounted for. To imprint the stresses from
an assumed diastolic pressure of 87mmHg in the in vivo
imaged state, we used a modified updated Lagrangian for-
mulation (MULF) (Gee et al. 2009, 2010). The obtained
prestrained/prestressed state implicitly defines a stress-free
reference geometry, while neglecting growth and remodel-
ing processes in the wall. This implicitly defined geometry
of course depends on the constitutive properties of the arter-
ial wall and the ILT and hence varies from patient to patient
and from sample to sample in an UQ analysis.

After the prestressing phase, the luminal pressure is
increased to 121mmHg, taking into account the imprinted
stresses and strains acting on the imaged configuration. For
the constitutive behavior of the ILT in the male71 aneurysm,
the model proposed by Gasser et al. (2008) was chosen,
using the parameters provided in his work. Furthermore, in
all cases, the stochastic material law described above in (7)
is used to model the aneurysmatic arterial wall.

To study the sensitivity with respect to the unknown cor-
relation length d from (3), we investigated three random
field models with different correlation lengths d = 12.5,
d = 25 and d = 50mm, respectively. The chosen range
covers random fields which exhibit rather short-scale fluc-
tuations as well as highly correlated random fields with a
correlation length in the range of the diameter of a typical
aneurysm. All finite element calculations were done using
our in-house research code BACI (Wall and Gee 2014). In
order to obtain a reference solution for comparison with the
proposed approach, we performed direct MC with all high
fidelity finite element models for all three correlation lengths
with a sample size of NSAM = 50,000. First, the impact of the
uncertain constitutive parameter β on the relevant mechani-
cal quantities such as Cauchy von Mises stress (σvM ), Euler-

Almansi von Mises strain (evM ), and strain energy Ψ is dis-
cussed on the basis of these MC simulations, and the influ-
ence of the correlation length on the distributions of these
quantities is investigated. Then, in Sect. 4.2, we will com-
pare the results of the employed Bayesian multi-fidelity MC
approach to the MC reference solution and the accuracy and
efficiency of the proposed multi-fidelity approach is exam-
ined.

4.1 Monte Carlo reference solution

As expected, in spite of drastic variations in the wall stiff-
ness, the overall spatial pattern of the von Mises stress is
still largely determined by the geometry of the aneurysm
and rather insensitive to those variations. However, a slight
dependency on the correlation length was found, where a
smaller correlation length leads to greater variations in the
overall stress pattern. Figure 4 shows the vonMises stress and
strain resulting from five different showcase realizations of
the stochastic constitutive law for the male71 aneurysm. The
samples in Fig. 4 were computed with a correlation length of
d = 12.5mm for which the resulting stress pattern exhibits
the largest variations. Nevertheless, the overall spatial pat-
tern of the stress remains remarkably similar for all depicted
realizations of the random field. Moreover, when the correla-
tion length of the random field is increased, the variations in
the spatial stress pattern become even less significant. This
is in agreement with theoretical mechanical considerations,
as the stress state in the aneurysm wall is dominated by in
plane membrane stress, which is determined mostly by the
overall geometry of the aneurysm and the traction boundary
conditions.

In contrast to the spatial stress pattern, the spatial strain
pattern of the samples very significantly indicate a strong
dependency between local stiffness of the wall and local
strain. Unlike in the stress pattern, regions with high strain
are not determined by the overall shape or the geometry of
the aneurysm but rather by regions with low wall stiffness
as shown in Fig. 4c. The male67 aneurysm shows similar
behavior and is hence not shown here.

In addition to this qualitative assessment, we examined
the empirical probability distributions of the stress obtained
fromMCat several locations across the aneurysms, seeFig. 5.
The mechanical quantities of interest were evaluated at sin-
gle elements at these specific locations. Figure 6 shows the
empirical probability densities of the von Mises stress, von
Mises strain and strain energy at two locations on the male67
aneurysm. Location 1, shown in Fig. 5a, is located in the
neck of the aneurysm above the sack. Location 2 is at the
right lateral, distal end of the AAA sack, see Fig. 5a. Both
locations are in regions that exhibit high wall stress. For the
other aneurysm male71, Fig. 7 shows the probability densi-
ties evaluated at location 3, located at the center of the dorsal
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Fig. 4 Simulation results of male71 aneurysm for five realizations of the random field using a correlation length of d = 12.5mm. Realizations of
random field (a), and resulting von Mises stresses (MPa) (b) and von Mises strains (c)

Fig. 5 Locations in AAA wall
at which mechanical quantities
are evaluated. a Male67 model
anterior view. bMale71 model
posterior view. cMale71 model
anterior view
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Monte Carlo reference solution for male67 aneurysm. a Von Mises stress at location 1. b Von Mises stress at location 2. c Von Mises strain
at location 1. d Von Mises strain at location 2. e Strain energy at location 1. f Strain energy at location 2

side of the aneurysm sack in the high stress region, and at
location 4, located at the ventral side of the aneurysm sack
in a low stress region with thick ILT underneath the AAA
wall, see Fig. 5b, c. All empirical densities are plotted for the
different correlation lengths of the random field in the sto-

chastic constitutive model. In addition to the mean and COV,
the 95% quantiles are provided for each of the distributions
in Figs. 6 and 7, respectively.

The obtained distributions for the stresses confirm the
qualitative assessment that the stresses are only mildly
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Monte Carlo reference solutions for male71 aneurysm. aVonMises stress at location 3. bVonMises stress at location 4. cVonMises strain
at location 3. d Von Mises strain at location 4. e Strain energy at location 3. f Strain energy at location 4

affected by the local stiffness of the wall. The COVs of the
stress distributions are below 0.12. If only the locations 1,
2, and 3, which all lie in high stress regions of the respec-
tive AAAs, are considered, the maximum COV of the stress
distribution is 0.07. Also for these three elements, the COVs

of the stress become even smaller with increasing correla-
tion length of the random field. In contrast to this, the COV
of the stress at location 4, which lies in a region with thick
ILT and low wall stress, is less influenced by the correla-
tion length. The 95% quantile of the stress distributions, as a
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“worst-case” estimate, is approximately 2–19% higher than
the respective mean value, see Figs. 6a, b and 7a, b. This
provides further evidence that uncertainties in the constitu-
tive parameter β result in only moderate uncertainty in the
computed stresses.

While this appears to be consistent with the findings from
Raghavan and Vorp (2000), it should be stressed that Ragha-
van and Vorp only considered mild parameter variations
within the 95% confidence interval of their estimated mean
value and not within the complete range of measured values.
Furthermore, they did not consider spatial intra-patient varia-
tions of the constitutive parameters nor did they consider the
prestressed state of the aneurysm or ILT. Findings similar to
ours have also been reported for intracranial aneurysms by
Ma et al. (2007) andMiller and Lu (2013). These two studies
also indicate only a mild dependence of the wall stresses on
the constitutive parameters; however, only spatially homoge-
nous parameters were considered therein as well.

Our results show that the wall stresses are only mildly
sensitive to variations in the constitutive parameter β. This
holds especially for the rather long-scale spatial heterogene-
ity obtained with the longer correlations lengths of the ran-
dom field, see Fig. 6a. The sensitivity of the stress state on
thematerial properties typically increases as the randomfield
exhibits strong spatial gradients in the parameter field as one
moves to smaller correlation lengths, indicating that only
strongly localized variations in this parameter have a signif-
icant effect on the stresses. We argue that the reason for this
insensitivity, in spite of strongly localized variations in β,
can be ascribed to the prestressed state of the imaged geom-
etry. The prestress in the in vivo imaged configuration of
cardiovascular structures has to be accounted for in order to
obtainmeaningful simulation results, as has been pointed out
in numerous publications (Gee et al. 2009, 2010; Speelman
et al. 2009; Miller and Lu 2013). All techniques to account
for this essentially approximate a stress state that equili-
brates with the external load given the spatial configuration.
The boundary conditions in a typical cardiovascular problem
resemble those termed statically determinate. Dominated by
traction boundary condition emulating luminal blood pres-
sure, theDirichlet boundary conditions applied far away from
the region of interest have onlyminor influence. Thus, in pre-
stressed cardiovascular structures which are predominantly
loaded by traction boundary conditions, the overall stress
state, which is largely determined by the prestress, is gov-
erned by simple equilibrium of internal stress with the exter-
nal loading and therefore is relatively insensitive to variations
in the constitutive parameters.

In contrast to the stresses, the strain and strain energy
exhibit large COVs and are therefore drastically affected by
the constitutive parameter β. The probability distributions
depicted in the Figs. 6c–f and 7c–f reveal the large variations
in local strain and strain energy. With COVs up to 0.28 and

0.6, respectively, the strains and strain energy exhibit signif-
icantly larger COVs than the stresses, rendering a statement
about the true strain state of the aneurysm difficult when
facing uncertain constitutive parameters. Whereas the distri-
bution of the stresses are symmetric, both strains and strain
energy exhibit skewed distributions. The contour plots in Fig.
4c reveal a close dependence between low β value and high
local strain and vice versa, and the overall spatial pattern of
the strain depends mostly on the realization of the random
field and not on the geometry of the aneurysm. Since the local
stress state is mostly dictated by the given spatial configura-
tion and external load, local strains depend predominantly on
the local stiffness. The softer the wall, the higher the strains
need to be in order to reach a certain “predetermined” stress
level.

Comparing the probability densities of the strain and strain
energy at different correlation lengths in Figs. 6c–f and 7c–f,
respectively, there is no noticeable difference between the
three assumed correlation lengths. The variance of these
probability distributions is virtually independent from the
chosen correlation length for both, strains and strain energy.
If the 95% quantiles are used as an estimate for a worst-case
scenario and compared to the mean values, we see that strain
is potentially 60–70% higher than the mean value and thus
could be dramatically underestimated in deterministic mod-
els with population-averaged constitutive parameters. In case
of the strain energy, the margin of uncertainty is even larger
with aCOVof typicallymore than 0.5,which results in a 95%
quantile that is more than twice as high as the mean value.

The explanation for these very large COVs is once again
the non-stress-free in vivo imaged configuration of the
aneurysm. The combination of a known deformed config-
uration and the load case leading to this configuration results
in a computed stress state, which is only mildly sensitive to
variations and uncertainties in the constitutive parameter β.
In a sense not knowing the stress-free reference configura-
tion but the deformed configuration is an advantage for the
prediction of wall stress. This is not the case for the com-
putation of the strain state. With a stress state that is to a
large extend determined by the geometry of the aneurysm,
the strains become very sensitive to the local stiffness of the
AAA wall. Assuming that the local stress state is dictated by
the geometry and hence more or less fixed, the strain state
that corresponds to this stress state depends on β. Low local
stiffness will result in very high local strains and vice versa.
Thus, any uncertainty in β directly translates to uncertainty
in the strain state, inhibiting an accurate prediction of the
strains if the stress-free geometry and the constitutive prop-
erties are unknown or uncertain. The same argument holds
if the strain energy is considered as quantity of interest. As
a result, the probability distributions of the strains and strain
energy evaluated at specific locations in thewall, exhibit very
high COVs.
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4.2 UQ using Bayesian multi-fidelity MC

Of course, conducting direct MC for large patient cohorts
in a clinical setting is impractical. Hence, we will demon-
strate the capabilities of the aforementioned UQ approach,
which reduces the computational cost to an acceptable level
for studies with a larger patient cohort. To demonstrate the
efficiency and accuracy of the proposed framework,we chose
a subset of the results from the previous chapter. Four exam-
ples which are summarized in Table 3 are considered, exam-
ining von Mises stress and strain at distinct locations of the
twoAAAmodels as quantities of interest. Moreover, we take
into account different correlation lengths of the random field
as well as different approximation schemes for the approx-
imate models. After computing 50,000 MC samples using
the approximate models, 200 of those were selected and the
corresponding high fidelity samples were taken from theMC
reference solution. The 200 samples were selected such that
they evenly cover the entire support of the particulate approx-
imation of πx . This can be achieved by sorting all samples
into equally wide bins and then selecting a fixed number of

particles from each bin. Then, this set of training sampleswas
used to determine the posterior densityπθ ,σ 2(θ, σ 2) and sub-
sequently to compute the conditional probability distribution
p(y|x). Figure 8 shows a comparison between the solution
of the approximate model and the high fidelity solution for
all four examples. The color-coded 2D histograms, based on
all 50,000 MC samples, show the interrelation between the
quantity of interest computed on the approximate and the
high fidelity model, respectively. The training samples that
were used to infer the parameters of the regression model
are shown in Fig. 8 as black dots. The obtained posterior
mean as well as the 1 and 99% quantiles of p(y|x) are also
depicted in Fig. 8. In all four cases, the posterior mean of
p(y|x) captures the interrelation between the approximate
and high fidelity solution very well. Furthermore, the com-
puted quantiles readily provide confidence intervals, which
contain virtually all MC samples with very few exceptions.
The reason for the noisy relationship between x and y is that
the coarsening of the discretization yields larger discretiza-
tion errors, and therefore, spurious effects due to the coarser
discretization appear. Moreover, the coarser mesh is unable

Table 3 Examples for Bayesian
multi-fidelity MC approach Example Patient Quantity Location d (mm) Approximation scheme

1 Male67 σvM 2 25 Coarsening

2 Male71 σvM 3 25 Coarsening

3 Male71 σvM 3 12.5 Coarsening no ILT

4 Male71 evM 4 25 Coarsening no ILT

Fig. 8 Comparison between
approximate solution and high
fidelity solution. In addition to
the posterior mean and the 1 and
99% quantiles of p(y|x), the
figures show the used training
samples (black dots) as well as
all 50,000 samples as
color-coded 2d histogram.
a Approximate versus high
fidelity solution, male67
aneurysm, d = 25mm, σvM at
location 2. b Approximate
versus high fidelity solution,
male71 aneurysm, d = 25mm,
σvM at location 3. c
Approximate versus high
fidelity solution, male71
aneurysm, d = 12.5mm, σvM at
location 3. d Approximate
versus high fidelity solution,
male71 aneurysm, d = 25mm,
evM at location 4
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Fig. 9 Exemplary comparison of empirical densities from approx-
imate model πx (x), high fidelity model πy(y) and posterior mean
approximation π̂y(y). a Example 1: male67, d = 25, σvM at loca-

tion 2. b Example 2: male71, d = 25, σvM at location 3. c Example
3: male71 d = 12.5, σvM at location 3. d Example 4: male71 d = 25,
evM at location 4

to resolve thefiner details of the randomfield,which results in
a smeared less detailed solution. We found that these effects
are more distinct if the quantity of interest is the von Mises
stress as compared to von Mises strain.

While the first two examples show an almost linear rela-
tion between approximate and high fidelity solution, example
three and particularly example four exhibit a distinct nonlin-
ear dependency. The Bayesian regression model is able to
capture these nonlinear interrelations as well, without any
modification of the formulation. It also can be seen in Fig.
8, especially in the latter two examples, that the lack of ILT
in the approximate model leads to significant differences in
the overall magnitude between the stresses computed with
approximate and the high fidelitymodel, respectively. In fact,
the stress and strain are considerably higher in the approx-
imate model, due to the lack of ILT. By comparing the two
densities πx (x) and πy(y), as shown in Fig. 9, this difference
becomes even more apparent.

The posterior mean approximation π̂y(y) is computed for
all examples using (23) and depicted in Fig. 9 together with
πx (x) and the MC reference solutions of the high fidelity

model πy(y). Despite the differences between πx (x) and
πy(y), the posterior mean approximation π̂y(y) is in excel-
lent agreement with the MC reference solution for all exam-
ples.

Table 4 lists the mean, COV and 95% quantile for both,
the MC reference πy(y) and the posterior mean approxima-
tion π̂y(y). Additionally, the relative error between the MC
reference and theBayesian approach is given, thus allowing a
quantitative assessment of the accuracy. For the mean value,
a relative error below 1% is achieved for all examples. The
error of the estimation of the COV and the 95% quantile is
slightly higher. However, considering the crude approximate
models and the gain in computational efficiency, the accuracy
is more than sufficient for biomedical applications.

The ability to obtain an accurate estimate for the complete
PDF, rather than just the first moments is a major advantage,
because we can compute the probability that the quantity of
interest exceeds a certain threshold y0. Although the exact
definition of a failure threshold can be difficult in biome-
chanical systems, such a failure probability is a valuable tool
in many applications including rupture risk stratification of
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Table 4 Comparison between MC reference solution and Bayesian multi-fidelity MC approach

MC reference Posterior mean Relative error (%)

Mean COV 95% q. Mean COV 95% q. Mean COV 95% q.

Ex. 1 0.1932 0.0239 0.1983 0.1928 0.0259 0.2012 0.21 8.26 1.45

Ex. 2 0.1874 0.0217 0.1939 0.1872 0.0223 0.1940 0.12 2.70 0.05

Ex. 3 0.1872 0.0648 0.2073 0.1871 0.0653 0.2080 0.10 0.86 0.34

Ex. 4 0.1030 0.2114 0.1430 0.1023 0.2139 0.1395 0.71 1.20 2.44

Fig. 10 Probability of exceeding a local failure threshold y0 for a given
quantity of interest. Comparison of MC reference solution to posterior
mean approximation and posterior quantiles. a Example 1: male67,

d = 25, σvM at location 2. b Example 2: male71, d = 25, σvM at loca-
tion 3. c Example 3: male71 d = 12.5, σvM at location 3. d Example
4: male71 d = 25, evM at location 4

AAAs. Under the assumption that a suitable failure thresh-
old y0 can be defined, the probability that a threshold y0 is
exceeded is computed using (29). Figure 10 depicts the poste-
rior mean failure probability computed for a range of failure
thresholds y0 for the chosen examples. Again an excellent
agreement with the MC reference solution is achieved, at a
fraction of the computational cost, see Table 5. In addition,
credible intervals which are also shown in Fig. 10 can be
computed using (30). The intervals are an indicator for the

accuracy of the computed failure probability estimate based
on the training data. As depicted in Fig. 10, the provided
bounds contain the MC reference solution.

The computational efficiency of the method depends on
the ability to create cheap approximate models, which still
provide “enough” relevant information. In our examples, the
ratio of computational effort required to compute one sample
of the accurate and the approximate model, respectively, is
between 10.2 and 50.WhereasKoutsourelakis (2009) reports
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Table 5 Comparison of computational costs between direct MC and Bayesian multi-fidelity MC approach

Example Patient Approximation scheme Cost MC Cost multi-fidelity MC

1 Male67 Coarsening 50,000 5,075

2 Male71 Coarsening 50,000 2,051

3 Male71 Coarsening no ILT 50,000 1,195

4 Male71 Coarsening no ILT 50,000 1,195

Costs are given as equivalent number of calls to the respective high fidelity model

ratios of over 1,000, we believe that in general biomedical
engineeringproblems such ratios canusually not be achieved.
However, a ratio of 50, accomplished by using a coarser dis-
cretization and omitting the ILT in the approximate model,
results in a tremendous reduction of the computational effort,
see Table 5. Compared to direct MC using the high fidelity
model, the total computational effort is reduced by a factor
of 42. As the male67 patient does not exhibit ILT and merely
a coarser discretization was used to create the approximate
model, the computational cost for the male67 aneurysm is
reduced by a factor of 10 compared to direct MC. However,
the vast majority of AAAs in our patient database exhibit
ILT and especially for large AAA, which are computation-
ally expensive, being able to omit the ILT in the model will
result in even greater savings. However, we would like to
point out that omitting the ILT in the approximate model
is obviously only a viable option as long as no uncertain-
ties in the ILT properties itself are considered in the UQ
analysis. By using direct MC as a sampling strategy for the
approximate model, as compared to importance sampling or
SMC,we are able to access additional quantities of interest by
computing few extra samples in the high fidelity model and
reuse all samples of the approximate model. We would like
to stress the fact that the approximate model does not have
to be accurate, as in deterministic multi-level/grid schemes.
As shown in Fig. 9, approximate models without ILT yield
significantly higher values for strain and stress due to the
missing support of ILT for the AAA wall. Additionally, no
restrictions to the interrelation between the approximate and
high fidelity model apply. Even highly nonlinear interrela-
tions are detected and accurately reproduced by the Bayesian
regression model, the complexity of which is determined by
the information provided by the training samples. Whereas
inaccurate approximate models and nonlinear interrelations
do not adversely affect the accuracy of the approach per se,
coarsening of the discretization yields less detailed smeared
out results due to the coarser representation of the random
field, a larger discretization error, and potentially aggravates
spurious numerical effects such as volumetric locking. This
results in a noisier relationship between the approximate and
the accurate model, i.e., a higher variance of the conditional
probability distribution p(y|x). As the variance increases,
the credible intervals will become larger too. Furthermore,

the accurate prediction of the quantity of interest on the high
fidelity model becomes more difficult, especially with regard
to the tails of the distribution and the assessment of small fail-
ure probabilities.

While we used a set of 200 training samples and achieved
an excellent agreement with the MC reference solution, the
amount of training data needed depends on a number of fac-
tors. To be specific, the number of necessary training sam-
ples and hence runs of the high fidelity model, depend on
the required accuracy, the employed approximate model and
on the quantity of interest as well as the statistic to be esti-
mated. Hence, it is difficult to provide an a priori estimates of
how many samples are needed to achieve a given accuracy.
However, the variance of the conditional distribution p(x |y)
and the confidence intervals computed using (30) provide us
with a good indicator whether additional data will improve
the accuracy. If the variance can no longer be decreased by
adding more training data, the low fidelity model has to be
changed if a more accurate assessment is required. We note
that more elaborate schemes to select the training samples
could further reduce the number of evaluations of the high
fidelitymodel. This could be achieved for instance by exploit-
ing the confidence intervals; in the sense that additional sam-
ples are selected in regions of x which contribute more to the
uncertainty in the estimate of Pr [y ∈ A] and where these
intervals are relatively large (Koutsourelakis 2009). How-
ever, this is beyond the scope of this work and subject of
ongoing research.

4.3 Implications for computational rupture risk assessment
of AAAs

Considering these results with regard to AAA rupture
risk assessment using deterministic computational mod-
els, it seems that stress-based failure or rupture models
(Vande Geest et al. 2006a; Gasser et al. 2010; Reeps et al.
2012) are well suited for rupture risk assessment, since wall
stress is a rather insensitive measure with regard to consti-
tutive uncertainties in the AAA wall. However, while we
considered uncertainty in the constitutive parameter β, it is
important to keep inmind that various other sources of uncer-
tainty exist. Most importantly, uncertainties in the wall thick-
ness are likely to have a profound affect on the stresses in the
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arterial wall. While we considered only the uncertainty in
one constitutive parameter, the methodology presented here
can readily be extended to include other uncertain model
parameters. This is demonstrated for a simple example in the
following section. The application to realistic patient-specific
geometries with multiple random fields is beyond the scope
of this paper, but can be done with the proposed method,
and we are planning to do this in the future. We believe that
rupture potential stratification employing stress-based mea-
sures can be improved by rigorous UQ and that population-
averaged constitutive parameters and deterministic models
are not sufficient for the accurate patient-specific assessment
of AAA rupture potential.

Furthermore, while many of the conducted studies assess
rupture potential by computingwall stresses based on an elas-
tic model, it has been pointed out previously that the dam-
age and failure process of soft tissue is more involved and
cannot be captured with purely elastic models employing a
von Mises stress-based failure criterion (Marini et al. 2011;
Rodriguez et al. 2008; Peña et al. 2008; Volokh and Vorp
2008; Volokh 2010; Gasser and Holzapfel 2002). In addi-
tion, our results indicate that the von Mises stresses, while
being only mildly sensitive to variations in β, do not con-
tain or reveal all information about the mechanical state of
the tissue. With the stresses being determined mostly by the
geometry of the aneurysm and the applied transmural pres-
sure, the strains or strain energy is almost decoupled from
the stresses as shown in Fig. 4. Advanced tissue damage and
failure models, e.g., based on the evolution of the isochoric
stored strain energy of the material, as proposed by Simo
(1987) and applied to AAAs by Marini et al. (2011) require
accurate prediction of the prevailing strain and strain energy.
In lack of truly patient-specific parameters, detailed statis-
tical and probabilistic models based on empirical data and
rigorous UQ are the only way to obtain meaningful and reli-
able results.

However, it is well known that several growth and remod-
eling processes constantly rebuild and transform the tissue
in the arterial wall; hence, cardiovascular systems cannot be
considered to exhibit purely elastic behavior. Localized areas
of high strains are likely to be remodeled such that elastic
strain peaks in the tissue are reduced. Therefore, we believe
that 95% quantiles of both strains and strain energy are unre-
alistically high, as growth and remodeling processes would
diminish such high strains.

To further reduce the uncertainty in the input parameters,
the use of regression techniques to create statistical models
which relate, e.g., the constitutive parameters to noninva-
sively measurable variables could help to reduce the uncer-
tainty in patient-specific material properties or other model
parameters. Since this empirical approach has been success-
fully applied to estimate the spatial distribution of AAAwall
strength (Reeps et al. 2012; Vande Geest et al. 2006a), we

believe that this approach could help to refine the probabilis-
tic description of other uncertain model parameters as well.

5 Proof of concept: multiple sources of uncertainties

In this section, we want to demonstrate with a simpler proof
of concept example that the proposed approach can also be
used to study geometric uncertainties such as an uncertain
distribution of wall thickness. Furthermore, we show that
problems with more than one uncertain physical parameter,
all of which are modeled as random fields, can be tackled
with the Bayesian multi-fidelity approach. In addition to the
uncertain constitutive parameter β, we consider an uncertain
wall thickness as well. Therefore, we exemplarily consider
the model of a cylinder with a radius of 15mm and a length
of 200mm as example that can be interpreted as a model of a
generic artery. As with the patient-specific AAAmodels, we
apply simple clamped boundary conditions at all in- and out-
let of the artery segment and impose a traction orthogonal to
the deformed configuration, to mimic a luminal blood pres-
sure of 160mmHg on the inner surface of the cylinder. To
reduce the computational burden, we consider only the upper
half of the cylinder and apply symmetry boundary conditions
on the cut surfaces. Note that due to the asymmetric spatial
distribution of the uncertain properties, the deformation of
the full cylinder will in general not be symmetric and com-
puting only half the model will introduce an error. However,
as this example is shown here in a mere proof of concept
fashion, we are willing to make this sacrifice for the benefit
of shorter computation times. The stochastic constitutive law
described in Sect. 2 is used as stochastic material model for
the wall of the cylinder. The wall thickness of the cylinder
is also modeled by a log-normal random field, realizations
of which are computed using (5) and (6). The parameters of
the marginal log-normal distribution of the field are set to
μt = 0.447 and σt = 0.333, respectively. These parameters
result in a spatially varyingwall thickness that covers roughly
the range between 0.5 and 4mm. In this example, we assume
that the two fields describing the constitutive parameter β

and the wall thickness, respectively, are not cross-correlated.
As in the patient-specific examples, we create two models
of different fidelity. A high fidelity model, a realization of
which is shown in the left part of Fig. 11, with 24,000 Ele-
ments and 98,532 degrees of freedom, and a low fidelity
approximate model, shown in right part of Fig. 11. The low
fidelity model consists of 300 elements and 2,046 degrees of
freedom. To further reduce the computational cost of the low
fidelity model, only a reduced luminal pressure is applied.
By applying only half the load, the number of necessary load
steps in the nonlinear solution scheme is cut in half as well.
The result is a low fidelity model which is approximately
120 times cheaper to evaluate than the corresponding high
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Fig. 11 One realization of high fidelity (left) and low fidelity (right)
finite element model of the generic artery example

Table 6 Generic artery example: size of studied finite element models
in degrees of freedom (dof) and solution times for one sample

Model Solution time (CPU seconds ) Dofs

High fidelity 4,800 98,532

Low fidelity 42 2,046

fidelity model. Of course, the reduced load will result in a
dramatic underestimation of, e.g., the wall stress computed
with the lowfidelitymodel. The resultingCPU times required
to compute one sample along with the numbers of degrees
of freedom are summarized in Table 6 for the two models.
Simulations of the low fidelity model were computed on one
core, whereas for the high fidelity model, four cores were
used. For the sake of brevity, we restrict ourselves to one
variant of this example, i.e., we consider only one correla-
tion length of the random fields (d = 25mm) and we discuss
the results of the Bayesian multi-fidelity approach based on
a single quantity of interest. Here, we chose the von Mises
stress in the wall of the cylinder at a specific location that
is indicated in Fig. 11 as location 5 and will be referred to
as such from here on. The overall procedure is the same as
described for the patient-specific examples and follows the
steps given in Table 1. Briefly, we compute a MC solution
for the low and high fidelity model using 50,000 samples.
The latter is only needed for comparison with the results
of the Bayesian multi-fidelity approach. Then, as described
previously, we use 200 samples from both models as training
data to infer the conditional probability distribution p(y|x),
which then allows us to compute an approximation π̂y(y) of
the desired probability density using (23).

5.1 Results

The plots in Fig. 12 provide a summary of the results. In Fig.
12a, a comparison between the solution of the approximate
model and the corresponding solution of the high fidelity
model is shown. In this example, the relationship is very
close to linear. Furthermore, it can be seen that the stress
values computed by the low fidelity model are obviously
considerably lower than the ones computed with the high

Fig. 12 Results for generic artery with uncertain constitutive parame-
ter and wall thickness. a Approximate versus high fidelity solution,
d = 25mm, σvM at location 5. b Comparison of empirical densities
from approximate model πx (x), high fidelity model πy(y) and poste-
rior mean approximation π̂y(y)

fidelity model due to the reduced pressure, which is applied
to the low fidelity model. This difference is also evident in
the computed histograms, which are shown in Fig. 12b. The
distribution of the stress computed with the coarse model is
shifted to the right compared to the MC reference solution.
However, the magnitude of the stress is mainly determined
by the local wall thickness, and this dependency can also
be captured by the coarser model with reduced load. Hence,
the posteriormean approximation π̂y(y), computed using the
Bayesian multi-fidelity approach, matches the MC reference
solution πy(y) very well. The relative errors in mean, COV,
and 95% quantile are 0.059, 1.44 and 0.63%, respectively.
Using the Bayesian multi-fidelity approach, the computa-
tional costs can be reduced to the equivalent of approximately
640 full evaluations of the high fidelity model.

As expected, the results show a high variability of the
stress at the evaluated location (COV = 0.369) due to the
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variable wall thickness. We believe that this will also be the
case for patient-specific geometries of cardiovascular struc-
tures, and we plan to investigate more elaborate examples in
the future using the proposed approach.

6 Conclusions

In this work, we presented a Bayesian multi-fidelity Monte
Carlo (MC) framework for efficient uncertainty quantifi-
cation (UQ) in large-scale nonlinear problems, with high
stochastic dimension. We applied the approach to complex
large-scale nonlinear biomechanical models with patient-
specific geometries with an uncertain constitutive parameter.
Furthermore, we demonstratedwith a proof of concept exam-
ple that uncertainties in wall thickness can be considered in
addition to constitutive uncertainty. Thereby, the uncertain
parameter are always modeled as three-dimensional non-
Gaussian random field, leading to a high stochastic dimen-
sion of the problem. By combining multi-fidelity sampling
with non-parametric Bayesian regression, we were able to
approximate the full probability distribution function of our
quantities of interest at a fraction of the computational costs
as compared to sampling of the accurate high fidelity model.
Furthermore, we showed that the approach achieves an excel-
lent agreement with the MC reference solution. This renders
UQ for complex biomechanical problems feasible on stan-
dard computing platforms.

In addition, we investigated the impact of the uncertain
constitutive parameter β on the stress, strain, and strain
energy in the arterial wall of patient-specific models of two
AAAs. We showed that, as expected, the von Mises stress is
rather robust against variations in the constitutive parameter
β and that the stress state is to a large extend determined
by the imaged geometry of the aneurysm. For the von Mises
strain or strain energy, on the other hand, large coefficients of
variations were found, revealing the insufficiency of deter-
ministic models with population averaged input parameters.
We conclude that careful UQ is a necessity under these cir-
cumstances, since UQ not only reveals the variability but can
also provide worst-case scenarios and estimates such as, e.g.,
the 95% quantile or local failure probabilities. Of course, the
uncertainties in other input parameters have to be considered
in such an analysis as well.

Furthermore, a parametric study was performed to exam-
ine the sensitivity of the results with respect to the correlation
length d of the random field. We studied three different cor-
relation lengths using direct MC. It was found that the proba-
bility distribution of the strains and strain energy at the tested
locations were not affected by the choice of the correlation
length. The stress, however, showed a greater variance with
decreasing correlation length of the random field, revealing

the need for further research and experiments to narrow the
range of the correlation length of the random field.
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Vořechovský M (2008) Simulation of simply cross correlated random
fields by series expansion methods. Struct Saf 30(4):337–363

Wall WA, Gee MW (2014) BACI: a parallel multiphysics simulation
environment. Tech. rep., Institute for Computational Mechanics,
Technische Universität München

Xiu D (2009) Fast numerical methods for stochastic computations: a
review. Commun Comput Phys 5(2–4):242–272

XiuD (2010)Numericalmethods for stochastic computations: a spectral
method approach. Princeton University Press, Princeton

XiuD, Sherwin SJ (2007) Parametric uncertainty analysis of pulsewave
propagation in amodel of a human arterial network. JComput Phys
226(2):1385–1407

123


	Towards efficient uncertainty quantification in complex  and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme
	Abstract 
	1 Introduction
	2 Stochastic problem formulation
	2.1 Probabilistic constitutive model
	2.1.1 Generation of non-Gaussian random fields using spectral representation and translation process theory

	2.2 Nonlinear stochastic boundary value problem

	3 Solution of the nonlinear stochastic boundary value problem
	3.1 Bayesian multi-fidelity Monte Carlo
	3.1.1 Bayesian regression model
	3.1.2 Prior distribution
	3.1.3 Computing the posterior
	3.1.4 Computing solution statistics of the high fidelity model


	4 Patient-specific examples
	4.1 Monte Carlo reference solution
	4.2 UQ using Bayesian multi-fidelity MC
	4.3 Implications for computational rupture risk assessment of AAAs

	5 Proof of concept: multiple sources of uncertainties
	5.1 Results

	6 Conclusions
	References




