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Abstract

The central role of the cytoskeleton in both healthy and diseased cellular functions makes it a compelling subject for detailed three-
dimensional (3D) micromechanical modeling. Microstructural features of the cytoskeleton govern the cell’s mechanical behavior in many
of the regulating cellular functions including cell division, adhesion, spreading, migration, contraction, and other mechanotransductive
effects which influence biochemical processes. Actin microfilaments (AF) combine to form one of the predominant cytoskeletal networks
important to these biological processes.

Here, the AF cytoskeletal microstructure and stress-strain behavior is modeled via a microstructurally-informed continuum mechan-
ics approach. The force-extension behavior of the individual filaments is captured using the MacKintosh derivation of the worm-like
chain (WLC) constitutive relationship for short chains where a new and direct analytical expression for the filament force as a function
of filament extension is developed in this paper. The filament force-extension behavior is then used in conjunction with the Arruda-Boyce
eight-chain network model to capture the 3D multiaxial stress-strain behavior of the network. The resulting 3D cytoskeletal network
constitutive model provides the ability to track microstructural stretch and orientation states during 3D macroscopic stretching condi-
tions. The non-affine nature of the network model effectively accommodates the imposed macroscopic shear strain through filament rota-
tion and a relatively small amount of filament stretch. These characteristics enable the network model, using physically realistic material
properties, to capture the initial stiffness of the AF network as well as the nonlinear strain stiffening observed at large stresses. The net-
work model predictions compare favorably with published microrheological data of in vitro AF networks.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Many important biological cellular functions rely on the
micromechanics of the cell and its cytoskeleton. The cell’s
cytoskeletal microstructure performs a crucial role in many
of the regulating cellular functions, including cell division,
adhesion, spreading, migration, contraction [1] and other
mechanotransductive effects which influence many bio-
chemical processes [2].
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Actin microfilaments (AF) are one of the primary pro-
tein filament components of the cytoskeleton. Microrhe-
ological experiments have been conducted on in vitro
reconstituted actin networks, quantifying their detailed
mechanical behavior (e.g. force deformation, shear fre-
quency, shear concentration) [3,4]. The rheology of cross-
linked in vitro AF networks has also been examined [5,6].
These data quantify key features of the mechanical behav-
ior of actin networks needed to develop constitutive
models.

1.1. Background on cytoskeletal actin filament networks

Cytoskeletal filamentous actin (F-actin) has an overall
diameter of �7 nm, in vivo contour lengths of �1 lm [7]
vier Ltd. All rights reserved.
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and in vitro contour lengths up to 20 lm [8]. The persis-
tence length is defined as lp = j/(kBT), where j is the bend-
ing stiffness of the filament, kB is Boltzmann’s constant and
T is the absolute temperature. The persistence length of F-
actin has been obtained from many experimental tech-
niques, including dynamic light scattering, microscopic
observation of thermal fluctuations and microscopic obser-
vation of driven oscillation of labeled AF [1]. Typical
in vitro measured values of actin filament persistence
length, including these and other measurement techniques,
range from 3–17 lm [8–16]. Fluorescently labeled AF have
been shown to exhibit twice the persistence length of native
AF [16], which explains some of the disparity in published
values [1]. The force–extension response is usually charac-
terized by a linear region followed by a nonlinear region
of increasing tangent stiffness as the filament’s extensional
limit is reached [7,17].

In vitro rheological experiments on reconstituted actin
gel-like networks have been conducted with varying levels
of actin and cross-link concentrations [4,5,18–20]. The
measured in vitro shear moduli have ranged from
0.01 Pa to several tens of Pa for the same gel concentra-
tion, with much of the variation attributed to differences
in gel preparation, polymerization and storage in addition
to the measurement method chosen [21]. Storage shear
moduli of semidilute in vitro networks have exhibited a
plateau region at intermediate frequencies (corresponding
to time scales of importance to the cell) which is indepen-
dent of frequency and governed by cross-link interactions
[1].

The influence of cross-links in actin networks has been
examined by tuning the degree of filament cross-linking
and bundling by varying the concentration of cross-links
(cCL) for a fixed actin concentration (cAF) or a fixed
R = cCL/cAF. Using scruin as the cross-linker, Gardel
et al. observed in vitro actin–scruin gels exhibiting network
behavior for cAF P 8 lM and R P 0.03, and significant
bundling effects for R � 0.5 [22]. For example, the results
show the initial shear modulus (G0) exhibits power-law
relationships with actin concentration when R P 0.03: in
particular, G0 � c2:5

AF for R = 0.13 and G0 � c2:1
AF for

R = 0.03 (for cAF P 8 lM) [22].

1.2. Background on cytoskeletal actin network modeling

There have been a number of approaches to modeling
isolated homogeneous F-actin networks, including cellular
solid models and biopolymer models. The cellular solids
model was originally developed by Gibson and Ashby
[23] and extended to actin networks by Satcher and Dewey
[24]. It describes the cytoskeletal network using a cubical
frame with an overall network modulus based on solid
fraction (/s) and deformation of the cell edges. For small
/s, the effective elastic modulus is proportional to /s if
stretching of the edges accommodates the imposed defor-
mation, or /2

s if bending and torsion of the edges are dom-
inant [25,26].
The biopolymer models extend polymer theory to bio-
logical macromolecules to create biopolymer network
models. Polymers are traditionally considered to be flexible
if their persistence length is much less than their contour
length (lp� Lc) and stiff if the opposite is true (lp� Lc)
[27]. The intermediate regime of semiflexible filaments, in
which lp � Lc, describes the behavior of many biologically
important macromolecules, including F-actin filaments
[19]. Accordingly, biopolymers behave more like continu-
ously flexible filaments rather than the traditional polymer
theory of freely jointed chains of rigid rods [1]. The Kra-
tky–Porod [28] based worm-like chain (WLC) model pro-
vides a representation of the axial extension of flexible
filaments and is derived from the free energy of bending
deformation due to thermal fluctuations. As the filament
is stretched, the amplitude of the undulations decreases.
This decrease in thermal undulation amplitude results in
a corresponding decrease in available filament conforma-
tions, leading to a decrease in entropy and an increase in
the axial stiffness of the flexible filament. The WLC model
has been effective at describing the entropic elasticity of a
number of single molecules when Lc� lp, including
DNA at low to moderate strains [29]. Although its force–
extension relationship requires numerical evaluation of
the path integral, interpolation formulas have been success-
fully used to simplify calculations (e.g. [30]). Subsequent
molecular theories (e.g. [19]) have addressed the semiflexi-
ble regime for Lc � lp with energy functionals and force–
deflection relationships that are still entropic in origin.
For extensions where the filament end-to-end distance
approaches the contour length, the entropic-based force–
deflection relationships for the flexible and semiflexible fil-
aments have been expanded to include an additional term
for the enthalpic axial stretch contribution [31–33].

Biopolymer network models calculate the elastic proper-
ties of cytoskeletal networks by incorporating the force–
deflection behavior of individual elastic cytoskeletal fila-
ments within models of the network geometry
[3,19,20,34–36]. This also provides a framework for deter-
mining the effect of cross-linking proteins on the behavior
of cytoskeletal filament networks. Empirically observed
shear moduli for F-actin networks with permanent cross-
links (but the same concentration of F-actin) have been
observed to vary over two orders of magnitude by varying
the cross-link density [22].

In order to determine the network elastic properties,
biopolymer models often employ a three-dimensional (3-
D) volume averaged framework of the 1-D filament
force–extension response by taking a chain aligned in the
primary load direction to govern the network behavior
(see Fig. 1a) [3,19]. These models often assume affine net-
work deformation [20], and can further be constructed to
account for varying degrees of cross-link densities. For
the limit of maximum cross-link density the shear modulus
is related to the solid fraction as G � /5=2

s [37].
Although successful in capturing some scaling relation-

ships (such as cross-link density effects), depending on the
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Fig. 2. Single filament schematic (adapted from Ref. [44]).
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Fig. 1. Comparison of two network structures (a) and (b) in their
undeformed states (left) and after deformation by simple shear (right).
Network (a) approximates network behavior based on a chain aligned
with the maximum principal stretch direction and network (b) considers a
simple multiple chain network geometry, illustrating how deformation is
accommodated in a non-affine manner primarily through chain rotation
with relatively little chain stretch (compared with case (a) above).
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network topology, network models can inadvertently over-
weigh the contributions of chains aligned in a primary load
direction. As a simple example, Fig. 1a depicts a network
subject to simple shear where the network shear strain is
accommodated by extensive chain stretching of chains
along the diagonal (the initial principal stretch direction)
with relatively modest rotation of the constituent chains.
Real network structures will accommodate the macro-
scopic deformation with constituent chains undergoing
both rotation and stretch. Indeed, much of the imposed
deformation will be accommodated by chain rotation with
a relatively small amount of chain stretch. For comparison
purposes, the deformation of the network depicted in
Fig. 1a is contrasted to an alternative simple network
shown in Fig. 1b. For the network of Fig. 1b, the imposed
shear strain is primarily accommodated by the rotation of
the constituent chains with relatively little chain stretch,
especially as compared with the network deformation of
Fig. 1a. Hence, more realistic cytoskeletal network models
must address the network’s ability to accommodate defor-
mation by both rotation and stretching (where the mini-
mum energy configuration that satisfies compatibility and
equilibrium will be found by the network).

Random networks, averaging over the contributions of
all chain orientations but taking an affine mapping of the
macroscopic deformation to all chains, have been
employed to model polymer network deformation as intro-
duced by Treloar and Riding [38] and further pursued by
Wu and van der Giessen [39]. Recently this same approach
has been applied to the rheology of biopolymer networks
[20]. Averaging over all chain orientations begins to cap-
ture the contributions of rotation and stretching, but the
affine deformation assumption results in the direct stretch-
ing of chains aligned with a primary stretch direction, and
these chains then dominate the macroscopic stress–strain
prediction. Some biopolymer networks, such as the spec-
trin cytoskeletal network of the red blood cell, have a
well-defined triangulated geometry which has been mod-
eled using the freely jointed chain model [34,35] as well
as the WLC model [40–42] to capture chain behavior
together with kinematically prescribed mapping of the
macroscopic deformation to the representative triangular
network unit cell.

In this paper, the single filament models will be inte-
grated into the Arruda–Boyce eight-chain network model
[43], which accommodates the stretch and orientation
states of isotropic, randomly oriented chain networks in a
simple averaged manner. The 3-D network model will be
adjusted to include the effects of bundling on structure
and mechanical behavior. Once the constitutive model
has been established, it will be compared with the experi-
mental data of Gardel et al. [22] discussed earlier.

2. Actin network constitutive model description

Here, we propose a constitutive model for the stress–
strain behavior of the cytoskeletal AF network. The
force–extension behavior of the AF will be taken to follow
a MacKintosh-type model. The AF network will be mod-
eled as an effective eight-chain network to capture the
molecular network structure.

2.1. Single filament model

Following the Kratky–Porod formulation [28], the
MacKintosh model is derived from the total energy of
bending deformation due to thermal fluctuations [28]:

EK–P ¼
j
2

Z Lc

0

ðo~t=osÞ2 ds ð1Þ

where~t is the unit tangent vector of any point along the arc
length, s, on a curved filament of contour length Lc (Fig. 2).

The MacKintosh model [19,44] describes a filament at a
finite temperature, with transverse thermal fluctuations
that result in a contraction, (DL)F=0 in Fig. 2, causing the
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end-to-end distance, r, at an axial force, F, of zero to be less
than the filament contour length, rF=0 = Lc � (DL)F=0.
Letting the x-axis define the average orientation of the fil-
ament and u define one of the two transverse displace-
ments, the total energy associated with applying a force
(F) to extend the filament can be shown to be

ETotal ¼
1

2

Z Lc

0

j
o2u
ox2

� �2

þ F
ou
ox

� �2
" #2

dx ð2Þ

This equation can be solved using a Fourier series with pin-
ned boundary conditions along with the theory of equipar-
tition of energy [44]. Based on the equilibrium amplitudes,
the contraction (for small transverse fluctuations) must
satisfy

hDLi ¼ Lc � r ¼ L2
c

lpp2

X
n

1

ðn2 þ /Þ ð3Þ

where the dimensionless force / ¼ FL2
c=jp2, and a factor of

two is included to account for the two transverse degrees of
freedom of a filament in 3-D fluctuation [44]. The nonzero
value of r at the zero force condition, important for net-
work calculations, is then found directly from

hDLi/¼0 ¼ Lc � rF¼0 ¼
L2

c

6lp

) rF¼0 ¼ Lc 1� Lc

6lp

� �
ð4Þ

We simplify the series relation of Eq. (3) through the use of
the Langevin function. The series for the average contrac-
tions converges to the following expression:

hDLi ¼ Lc � r ¼ L2
c

lpp2

p
ffiffiffiffi
/
p

cothðp
ffiffiffiffi
/
p
Þ � 1

2/

� �
¼ L2

c

2lp

Lðp
ffiffiffiffi
/
p
Þ

p
ffiffiffiffi
/
p

� �
ð5Þ

where p
ffiffiffiffi
/
p
¼ Lc

ffiffiffiffiffiffiffiffiffi
F =j

p
and LðbÞ is the Langevin function

defined by LðbÞ ¼ cothðbÞ � 1=b .
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Fig. 3. (a) The effect of persistence length on filament force–extension behav
Lc = 1.02 lm); (b) the effect of pretension on filament force–stretch behavior
lp = 3 lm). Both figures show exact results as well as results using the propose
Since the functional dependence of F on r is of more
interest than r as a function of F, Cohen’s Padé approxima-
tion for the inverse Langevin equation [45],

L�1ðxÞ ¼ x
3� x2

1� x2
þOðx6Þ ð6Þ

is used to create a more useful force–extension relationship,

F Mac ¼
kBT
lp

1

4ð1� r=LcÞ2

 !
Lc=lp � 6ð1� r=LcÞ
Lc=lp � 2ð1� r=LcÞ

� �
ð7Þ

which reduces to Eq. (4) for the zero force condition. This
approximation is valid for tensile and compressive forces
subject to ð1� 0:3Lc=lpÞ < r=Lc < 1; noting that
rF¼0=Lc ¼ 1� 0:167Lc=lp, this approximation covers the
range of filament extension of relevance for the semiflexible
(lp � Lc) network. In order to maintain a positive exten-
sion, r/Lc > 0, the approximation is therefore subject to
the following limits for tensile loads (Lc < 6.0lp) and com-
pressive loads (Lc < 3.3lp). The Padé approximation-based
force–extension expression, Eq. (7), compares very favor-
ably with the exact numerical expression, Eq. (3), with
the average error for each of the four cases in Fig. 3a
(lp = 3, 5, 7.5, 10 lm) equal to 0.4%, 0.8%, 1.2% and
1.5%, respectively.

Fig. 3a shows the single filament response of the MacK-
intosh model using characteristic properties of F-actin fila-
ments from a densely cross-linked network (lp = 3–10 lm,
Lc = 1 lm). The end-to-end distance at zero force, rF=0,
depends strongly on the combination of persistence length
lp and contour length Lc. Here, keeping Lc constant and
varying lp from 3 to 10 lm, we see the effect of lp on rF=0

at the different starting points of Fig. 3a, where rF=0 is
smaller for smaller lp. This then results in the increased ini-
tial chain stiffness with increasing lp, as shown in Fig. 3a.
Note that a densely cross-linked network (lp > Lc) operates
in this highly nonlinear regime of the force–extension curve
0

0.25

0.5

0.75

1

1.00 1.01 1.02 1.03 1.04

λc=r/r0

Fo
rc

e 
[p

N
]

Exact
Approximation

b

r0=rF=0=962nm r0=976nm  

LC=1.02µm 

ior as computed using the MacKintosh model (fixing contour length to
as computed using the MacKintosh model (for the case of Lc = 1.02 lm;
d approximation (Eq. (7)), illustrating the accuracy of the approximation.
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Fig. 4. Random F-actin network and corresponding idealized eight-chain network model. The stereomicrograph of the actin cortex is adapted from Ref.
[58]. J Cell Biol. Copyright 1983 The Rockefeller University Press. The bar in (a) and (b) is 0.1 lm.
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(i.e. r/Lc > 0.94 in Fig. 3a). Fig. 3b shows the effect of a dif-
ferent initial end-to-end distance, r0, on the filament force–
stretch (kc = r/r0) behavior. Here, taking the case of
lp = 3 lm and Lc = 1.0 lm, which has a zero force length
of rF=0 = 0.962 lm, we compare the behavior when
r0 = rF=0 = 0.962 lm to that when r0 = 0.976 lm. The
r0 = 0.976 lm case begins with an initial tensile force on
the filaments (i.e. chain pretension) of F0 = 0.07 pN. The
pretension results in the observed increase in initial stiffness
and decrease in limiting stretch shown in Fig. 3b. Con-
versely, a precompression condition will shift the curve to
the right, resulting in a lower value on the ordinate axis,
a reduced initial stiffness and an increased limiting stretch.

2.2. Network model

A network structure can be described by four basic
topological features (see Fig. 4): (i) a distribution in the ini-
tial distance between network junctions, which we call the
junction-to-junction distance or initial filament length, r0;
(ii) a distribution in the fully extended length (i.e. contour
length) of a filament between network junctions, Lc; (iii)
the network connectivity (functionality of network junc-
tions); and (iv) the orientation distribution of the filaments.
In order to simplify the mathematical description of the
network structure, we will represent these basic features
of the network in terms of average or idealized quantities:
(i) an average initial filament length; (ii) an average fila-
ment contour length; (iii) an idealized network connectiv-
ity; and (iv) the average orientation of the filaments. We
further simplify to the case of an initially isotropic network
(no preferred orientation in the initial state).

The orientation of a filament can be defined by the angle
between a reference axis and the junction-to-junction vec-
tor connecting the ends of the filament. For an initially iso-
tropic network, filaments are randomly oriented in space.
Thus, the average filament angle can be obtained by taking
the volume average of all possible orientations, and is given
by
hhi ¼
Z p=2

as¼0

das

Z p=2

bs¼0

dbs cos�1½cos as cos bs� cos as ¼ 57:3�

where as and bs are the azimuthal and polar angles, respec-
tively, in the spherical coordinate system (see [46] for the
analogous case of molecular orientation in polymeric net-
works). An alternative average can be obtained using Her-
mann’s orientation function and gives 54.7�. Therefore, an
idealized network topology should capture an initial aver-
age filament orientation close to that of 54–57�.

An idealized network structure that has been found to
capture this initial orientation in an average sense is the
eight-chain network model of Arruda and Boyce, which
was originally proposed to capture 3-D aspects of macro-
molecular network structure and its evolution with defor-
mation in elastomeric [43] and glassy thermoplastic [47]
materials. A combined WLC/eight-chain model has also
been extended to anisotropic biopolymer networks, such
as the collagen network in skin tissue by Bischoff et al.
[48] and Kuhl et al. [49], and an isotropic eight-chain net-
work model of unfolding modular chains developed by
Qi et al. [36]. Bertoldi and Boyce extended both of these
models to capture the behavior of mussel byssus via an
anisotropic eight-chain network model with a filament
model that captures the straightening out of bends in bys-
sus molecular chains using an elastica-type solution fol-
lowed by axial stretching of the chains and subsequent
force-induced unfolding of the modular domains [50].
Here, we apply the eight-chain network approach to den-
sely cross-linked and bundled cytoskeletal networks in
which Lc < lp. The eight-chain network considers an aver-
aged or idealized structure of eight chains located along
the diagonals of a cubic unit cell and connected by a cen-
trally located junction (see Fig. 5). For the isotropic net-
work, the cell is taken to be aligned with and to deform
with the macroscopic principal stretches. Therefore, taking
the normal to any face of the cell as the reference axis, the
average initial chain orientation of this network is simply
the initial orientation of the eight chains or 54.7�, capturing
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Fig. 5. Eight-chain network model geometry and deformation (adapted from Ref. [43]).
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the average orientation for a randomly oriented network.
Since the cell deforms with the principal stretch state ki

(where i represents the three principal directions), the
stretch on any chain in this network, kc, is the root-mean
square of the principal stretches and is always tensile for
isochoric deformations,

kc ¼ r=r0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

1 þ k2
2 þ k2

3Þ=3
q

¼
ffiffiffiffiffiffiffiffiffi
I1=3

p
where I1 ¼ k2

1 þ k2
2 þ k2

3 is the first invariant of the left or
right Cauchy–Green tensor. The initial end-to-end distance
is related to the network’s actin concentration (cAF) and fil-
ament properties (Lc, lp). The chains are also found to ro-
tate towards the maximum principal stretch direction(s).
For example, in the case of uniaxial tension, the chains ex-
tend and rotate towards the tensile axis (Fig. 5b); in the
case of uniaxial compression (or equibiaxial tension), the
chains extend and rotate away from the compression axis
(Fig. 5c). For the cases of uniaxial tension and uniaxial
compression, the principal axes remain fixed throughout
the deformation, and thus the chains in the unit cell rotate
and stretch in an affine manner.

The ‘‘non-affine” mapping of macroscopic deformation
to network chain deformation is more apparent when
examining the case of simple shear (see Fig. 6). The macro-
scopic basis is denoted as {xyz}, while the principal basis is
shown as {123}. In the undeformed state, the principal
(a) Undeformed 
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Fig. 6. Simple shear deformation
basis is undefined and could be oriented in any direction
(see Fig. 6a). Upon application of simple shear, the princi-
pal axes of stretch are identified and will rotate with defor-
mation and, furthermore, the chains will undergo
additional rotation relative to the maximum principal
stretch direction (h1; see Fig. 6b). Hence, this network rep-
resentation is seen to accommodate the imposed shear by
both non-affine rotation and non-affine stretching of the
constituent chains, effectively sampling the non-affine nat-
ure of the network behavior in a simple but effective man-
ner. The physical counterpart would be to view the rotated
unit cell as a method of sampling the rotation and stretch-
ing of chains (in eight directions with respect to the maxi-
mum principal direction) such that the overall non-affine
network response is captured in an averaged sense. The
eight-chain network model formulation captures the basic
features that Chandran and Barocas [51] and Onck et al.
[52] observe in their many membered discrete network
modeling approaches, in particular, the significant reorien-
tation of filaments that accommodates macroscopic
deformation.

Due to the ability of the eight-chain network to effec-
tively mimic the initial state of a randomly oriented net-
work and to also capture the evolution in chain stretch
and orientation with different deformation states, this sim-
plified network topology will be utilized to represent the
cytoskeletal network.
(b) Simple shear 
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2.3. Stress–strain behavior

The three-dimensional stress–stretch behavior of the AF
network can be determined using the eight-chain network
topology and its evolution with stretch together with a rep-
resentation of the axial force–stretch behavior of an AF
where the initial length of the filament is the initial junc-
tion-to-junction distance, r0, and the limiting length is
essentially the contour length, Lc, of the filament. Cytoskel-
etal filaments, especially AF, are observed to have only a
slight curvature between junction points (Fig. 4a). The
force–extension relations govern the filament’s response
during axial stretching by displacing the two junction
points and thus increasing the junction-to-junction distance
from r0 to r. The force–stretch behavior will consist of an
initially linear elastic region, followed by a strain stiffening
region as the junction-to-junction distance r approaches
the filament contour length Lc (see Fig. 3a). The limiting fil-
ament stretch is therefore defined as kL = Lc/r0.

The work done by each chain can be found by integrat-
ing the filament force–extension expression (Eq. (7)):

DW c ¼
Z

F dr

and is equal to the filament strain energy. The strain energy
density of the network, U, is simply the product of the fil-
ament density, n (number of filaments per unit volume),
multiplied by the strain energy of a single filament, uf, in
the eight-filament network: U ¼ nuf since all filaments in
the eight-chain network experience the same stretch. The
expression for the strain energy density of the eight-fila-
ment cytoskeletal network model is

U Mac ¼
nkBT

lp

Lc

4ð1� r=LcÞ
� lp½lnðL2

c � 2lpLc þ 2lprÞ
�

� lnðr � LcÞ� � c
�

ð8Þ

where c is a constant equal to the initial strain energy den-
sity from the filaments. Since r ¼ kcr0 ¼ r0

ffiffiffiffiffiffiffiffiffi
I1=3

p
, the

strain energy density expression is a function of I1.
The actin cytoskeleton is embedded in a nearly incom-

pressible fluid (cytosol) and hence is taken to deform at
constant volume.1 The Cauchy stress is found by differenti-
ating the strain energy density:

T ¼ 2
oU
oI1

B–p�I ¼ nkBT
3lp

r0

kc

1

4ð1� kcr0=LcÞ2

 !

	 Lc=lp � 6ð1� kcr0=LcÞ
Lc=lp � 2ð1� kcr0=LcÞ

� �
B–p�I ð9Þ

where B = FFT is the left Cauchy–Green tensor (Finger
tensor), kc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðBÞ=3

p
and the deformation gradient
1 Note that this network model can be incorporated into poroelastic
frameworks to capture fluid flow and, consequently, swelling/deswelling
effects on the behavior.
F = ox/oX, where x is the position vector of a material
point in the current configuration and X is the original po-
sition. Also in Eq. (9), I is the identity tensor and p* is the
additional pressure required due to the incompressibility
constraint and obtained by satisfying equilibrium. The
Cauchy shear stress–strain relationship becomes

sMac ¼
nkBT
3lp

r0

kc

1

4ð1� kcr0=LcÞ2

 !

	 Lc=lp � 6ð1� kcr0=LcÞ
Lc=lp � 2ð1� kcr0=LcÞ

� �
tan c ð10Þ

The initial shear modulus is given by

G0 ¼
nkBTr0

3lp

1

4ð1� r0=LcÞ2

 !
Lc=lp � 6ð1� r0=LcÞ
Lc=lp � 2ð1� r0=LcÞ

� �
ð11Þ

The constitutive model presented here is a function of
the material properties n, lp, Lc and r0. The filament den-
sity, n (filaments m�3), is defined as n ¼ qL=Lc. The actin
length density, qL (lm m�3), is defined as qL ¼
ðcAF 
MAMÞ=qAF where cAF is the experimental actin mono-
mer concentration, qAF (Da lm�1) is the linear actin den-
sity and MAM (Da monomer�1) is the molecular mass of
each actin monomer. Both qAF and MAM are actin material
properties, defined a priori. As defined earlier, the zero
force junction-to-junction distance rF=0 is a function of
Lc, lp, where a network initial junction-to-junction distance
r0 slightly larger than rF=0 indicates a prestress in the net-
work due to in vitro or in vivo environmental conditions
[17,53,54]. Here, the percent increase (a) of r0 beyond
rF=0 is defined as r0 = rF=0(1 + a). In principle, r0 and Lc

are measurable from micrographs and lp is measurable
from single molecule bending; however, they are operation-
ally fit from empirical stress–strain data for each network.
3. Actin filament network constitutive model results

3.1. Experimental data used for comparison

The rheology of actin networks has been quantified in
several studies [3,6,10,22,55]. We will compare our model
to the Gardel et al. data [22] which systematically varied
cAF while holding R ¼ cCL=cAF constant. This data mea-
sured the shear rheology of F-actin cross-linked with scruin
cross-linking proteins.

3.2. Representative low concentration case

The model was evaluated by first fitting the model to the
data with the lowest actin concentration found to exhibit
entangled network behavior, cAF = 8 lM and R = 0.03.
The contour length was calculated following the relation
presented by Gardel et al. [22] and the empirically derived
exponent (0.2) given by Shin et al. [4] for actin–scruin
networks,
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Lc ¼
R0:2dActin

2

ffiffiffiffiffiffiffi
p

cAF

r
ð12Þ

with dActin = 7 nm, R = 0.03 and cAF = 8 lM, resulting in
Lc = 1.1 lm. The chain density is determined to be
n = 1.2e19 filaments m�3 based on the values of Lc =
1.1 lm, cAF = 8 lM, qAF = 16 MDa lm�1 and MAM = 42
kDa monomer�1. The values of lp and a are chosen to best
fit the model to the 8 lM experimental data, noting that the
value of r0 associated with a will be nearly equal to Lc

based on the observed network topology of nearly straight
filaments between junctions. The best fit of lp = 3 lm
agrees with observed values of lp � 3 lm for F-actin with
Lc � 1–3 lm [16].

The shear stress–strain results are shown in Fig. 7a, with
the tangent modulus–shear stress results shown in Fig. 7b.
The network modeling parameters are n = 1.2e19 fila-
ments m�3, lp = 3.0 lm, Lc = 1.1 lm and r0 = 1.0 lm.
The network model captures the experimental data
through the entire range of shear strain using physically
realistic material properties. The network model also fits
well with the experimental tangent modulus–shear stress
behavior, including the low stress region of relatively
stress-independent modulus and the nonlinear increase in
tangent modulus at higher levels of shear stress.

The AF network model also enables tracking of the evo-
lution in filament orientation and stretch with macroscopic
deformation. The average orientation of a filament is
expressed as the azimuthal angle with respect to the direc-
tion of maximum principal stretch (hf), together with the
direction of the maximum principal stretch defined by its
angle (h1) with respect to the direction of imposed shear
(see inset of Fig. 8).

The filament orientation evolution shows that the shear
strain is accommodated by significant filament rotation
and a small amount of filament stretch. The eight-filament
network gives a filament stretch of kf = 1.0004 for a shear
strain of tan(c) = 0.05 and kf = 1.01 for tan(c) = 0.25. In
contrast, an affine network with a dominating diagonal fil-
ament (e.g. Fig. 1a) subjected to shear strains of
tan(c) = 0.05 and 0.25 requires much larger filament
stretches of kf = 1.03 and 1.15, respectively.

Fig. 7a also shows the normal stress difference, N1 � N2

(where N1 = T11 � T22, N2 = T22 � T33) as a function of
shear strain during the simple shear deformation. The nor-
mal stress difference is found to be negligible at small
strains and to increase monotonically as a positive value,
as expected, for an initially isotropic network based on
the first invariant of strain. Gardel et al. did not present
results for the normal stress difference for their networks.
However, recent work by Janmey et al. [56] has observed
a negative normal stress difference during finite shear of
much higher concentration, cross-linked actin networks.
This suggests a possible initial anisotropy in the Janmey
network configuration which could be modeled using an
anisotropic formulation of the eight-chain network (e.g.
[57]), or, alternatively suggests a cross-linking condition
that favors direct axial stretching of the filament over fila-
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ment rotation; this effect could be captured in future expan-
sions of the strain energy function by including torsional
potential contributions of the cross-linking junctions and
the enthalpic contributions from direct axial stretching of
the chains.

3.3. Effects of increasing actin concentration

Gardel et al. further explored the effects of varying actin
concentration and cross-link concentration on the shear
rheology of the network. Fig. 9a shows the tangent modu-
lus–stress behavior for four levels of cAF at fixed R = 0.03.
Note in Fig. 9a that the tangent shear modulus for the
cAF = 21 lM case is constant up to a shear stress of
s = 0.5 Pa, while the trend of nonlinear strain stiffening
observed in the other three concentrations suggests that
the 21 lM network should begin strain stiffening at
approximately s = 0.2 Pa. The shear stress–strain data
were obtained by taking a curve fit of the raw tangent mod-
ulus–stress data to calculate the shear stress–strain behav-
ior. The experimental data in Fig. 9b show the resulting
shear stress–strain behavior for varying cAF at fixed
R = 0.03.

We now explore the ability of the proposed model to
capture the effect of actin concentration on the stress–strain
behavior by attributing the observed effects to changes in
the network structure (n, r0, etc.). We then evaluate the
model’s ability to capture network prestress and bundling
effects by parametrically changing r0 and lp, respectively.
We begin by determining lp, Lc and a (due to prestress)
Table 1
Network parameters for different actin concentrations

Concentration (lM) lp (lm) n (m�3) Lc (lm)

8 3.0 1.2e19 1.07
12 3.0 2.1e19 0.89
21 3.0 5.1e19 0.67
29 3.0 8.2e19 0.57
for the lowest concentration case (8 lM) shown previously.
The persistence length is then held constant (indicating a
‘‘no bundling” assumption), while the contour length is
taken to scale with concentration ðLc � c�1=2

AF Þ following
Eq. (12). The percent increase (a) in r0 beyond rF=0 due
to prestress for each concentration is then adjusted to pro-
vide a fit to the experimental results, as shown in Fig. 9.
Table 1 contains the network parameters used for each
concentration case, with the initial prestress (r0) based on
r0 = rF=0(1 + a).

Note also that a decreases monotonically with cAF = 8,
12, 29 lM (ignoring the anomalous 21 lM data), approxi-
mately following the relationship a = 6.2(cAF)�½. The
stress–strain results correlate well with both the 12 and
29 lM data, as shown in Fig. 9b. The model also captures
the experimental behavior for the entire range of applied
shear stress, as shown in the originally published log–log
plot of tangent modulus vs. shear stress shown in Fig. 9a.
The good agreement between the model result and the data
also indicates that there is relatively little bundling in these
cases, and that the increasing stiffness with increasing cAF is
due to the change in network topology. The good agree-
ment in the high stress region, where strain stiffening
occurs, is a benefit of using a network model that accounts
for the non-affine deformation of a network, accommodat-
ing macroscopic deformation by rotation of filaments and
a small amount of filament stretch.

Note that the network model results for the 21 lM case
in Fig. 9 exhibits the transition to nonlinear strain stiffening
behavior by s = 0.2 Pa, consistent with the empirical trend
rF=0 (lm) r0 (lm) a (%) r0 (Pa)

1.00 1.03 2.7 0.66
0.85 0.87 2.1 1.1
0.64 0.65 1.2 2.4
0.55 0.56 1.4 8.6
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Fig. 11. Filament bundling geometry with (a) bonded bundles and (b)
unbonded bundles.
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exhibited by the other concentrations. The network model
results for the 21 lM case also exhibit good agreement with
the experimental tangent modulus–shear stress data in
Fig. 9a in both the low and high stress regions. The
21 lM shear stress–strain predictions of Fig. 9b are in good
agreement with the data up to a strain of 0.10, but exhibit a
much stiffer behavior at larger strains. This is likely a direct
result of the ambiguity of the 21 lM tangent modulus data
in the transition region which is key to reconstructing the
stress–strain curves.

3.3.1. Parametric evaluation of prestress effects

Prestress occurs in both in vitro or in vivo networks due
to a variety of environmental conditions [17,53,54]. In vitro
or in vivo actin networks could experience the prestress
from sources including osmotic/swelling pressures, external
tractions due an adherent cell membrane’s interactions
with the ECM (or the in vitro gel’s interactions with the
substrate), and/or internal myosin-generated contractile
forces. The proposed eight-chain MacKintosh network
model can account for prestress and hence can be used to
parametrically explore the effect of prestress on the
stress–strain behavior. The actin network prestress is
accounted for directly through a percent increase (a) in r0

beyond rF=0. Fig. 10 demonstrates the effect of an increase
in network prestress on the overall network shear stress–
strain behavior. The results show that increasing prestress
results in an increase in the initial shear modulus of the net-
work and a decrease in the network extensibility (as seen in
the dramatic increase in tangent modulus (slope) of the
stress–strain curve occurring at smaller strains when pre-
stress is increased).

3.3.2. Parametric evaluation of bundling effects

The network will also become stiffer with increasing per-
sistence length. Filament bundling increases the persistence
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Fig. 10. Effect of network prestress on the network shear stress–shear strain beh
the initial prestress (r0) based on r0 = rF=0(1 + a).
length of the ‘‘effective” bundled filament. At large values
of R (R = 1) the actin network behavior is dominated by
thick bundles, in contrast to almost no bundling observed
at R = 0.03 [22]. Here, we explore the ability of the pro-
posed model to capture the stiffening effects of bundling.

The bending stiffness of the bundle, and hence lp, can be
determined from the number of filaments per bundle (m).
Filament bundles might be unbonded, partially bonded
along the length or fully bonded along the entire axial
length of the filaments. Here we examine the two limiting
cases of ‘‘unbonded bundles” and fully ‘‘bonded bundles”.
The stiffness of unbonded bundles will scale linearly with
the number of filaments in the bundle. The stiffness of
bonded bundles will scale by the ratio of the effective
moments of inertia of the bonded geometry with that of
the single filament; this scaling is determined by estimating
the effective bonded bundle radius (Reff).

For bundles with two adjacent filaments (m = 2), the
stiffness is simply twice the stiffness of an individual fila-
ment. For bundles with m P 3, the unbonded bundle stiff-
ness will simply scale linearly with m. For bonded bundles
with m P 3, the increase in Reff, which leads to an increase
in stiffness from bundling, is illustrated in Fig. 11a (where rs
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Fig. 12. (a) Shear stress–shear strain response and (b) tangent shear modulus–shear stress response of bundled F-actin networks with varying persistence
length (R = 0.5, cAF = 7 lM). The experimental data are adapted from Ref. [22].

Table 2
Network parameters for different amounts of filament bundling

mbonded (no. per bundle) munbonded (no. per bundle) lp,m (lm) rF=0 (lm) r0 (lm) a (%) R cAF (lM) Lc (lm) n (m�3)

1 1 3 1.81 1.83 1 0.5 7 2.04 5.4e18
2 2 6 1.92 1.94 1 0.5 7 2.04 5.4e18
– 3 9 1.96 1.98 1 0.5 7 2.04 5.4e18
3 9 27 2.01 2.03 1 0.5 7 2.04 5.4e18
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is the radius of a single fiber) and the effective radius
required for an equivalent cross-sectional area is
Reff ¼

ffiffiffiffi
m
p

rs. Since the area moment of inertia of a solid cyl-
inder is I ¼ ðpR4

effÞ=4, the ratio of increasing effective stiff-
ness for bonded bundled filaments can be calculated as
follows (with E as Young’s modulus):

lp;m

lp;s

¼ jm

js

¼ ðEIÞm
ðEIÞs

¼ ðReffÞ4

ðrsÞ4
¼ m2 ð13Þ

The results for scaling the persistence length of a single ac-
tin filament to obtain the effective persistence length, lp,m,
of a bonded bundle of m filaments are given in Fig. 12. Ta-
ble 2 contains the network parameters used for each case in
Fig. 12. Each actin network was taken to have a prestress
set by assuming a = 1%, but with the persistence length
increasing for increasing numbers of bundled filaments.
The contour length was calculated using Eq. (12) with
dActin = 7 nm and cAF = 7 lM, resulting in Lc = 2.04 lm.

The case of lp = 6 lm represents a bundle of two fila-
ments while the case of lp = 32 	 3 = 27 lm represents a
bonded bundle of three filaments. The smallest stable fila-
ment bonded bundle is assumed to consist of three fila-
ments, and this case also exhibits excellent agreement
with the experimental shear stress–strain data (Fig. 12a)
as well as the tangent shear modulus–stress data of Gardel
et al. (Fig. 12b).

Alternatively, if the model assumes linear scaling of
bending stiffness due to unbonded bundles (Fig. 11b), then
the same case (R = 0.5, cAF = 7 lM) with three filaments
would exhibit reduced stiffness, as shown by the lp = 9 lm
curve in Fig. 12a. Of course, the unbonded, bundled case
matches the R = 0.5 data equally as well if nine filaments
are bundled instead of three (lp = 9 	 3 = 27 lm). This
unbonded bundle of nine filaments would have an average
diameter (DB � 30–40 nm, depending on the spacing
between filaments) on the order of the actin–scruin bundle
diameters observed by Shin et al. [4] via confocal micros-
copy (DB � 20–65 nm for R = 1, with DB � R0.3). This
would suggest that bundled actin fibers in the Gardel net-
works are only minimally bonded to each other for the case
of cAF = 7 lM, R = 0.5.
4. Concluding remarks

Constitutive models for F-actin microstructural network
behavior have been created using single molecule models
for individual filament force–extension behavior in con-
junction with an eight-chain network model to capture
the non-affine 3-D molecular network behavior. The single
filament force–extension constitutive model was based on
the MacKintosh derivation of the Kratky–Porod energy
functional for semiflexible filaments (lp � Lc). In further
developing this model, we developed an accurate approxi-
mation for the MacKintosh force–extension expression of
the form F Mac ¼ bF MacðrÞ using a Padé approximation.
When combined with the eight-chain network model, the
MacKintosh model was able to accurately capture the ini-
tial stiffness and nonlinear strain stiffening behavior
observed in shear rheology experiments. The 3-D cytoskel-
etal network constitutive model presented provides the
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ability to track microstructural stretch and orientation
states under macroscopic stretching conditions in an aver-
aged manner, and also enables variation of the filament
mechanical properties and concentrations.

In Appendix A, an eight-chain network model consider-
ing a linear constitutive model of the filament force–exten-
sion behavior is presented and compared with the
nonlinear MacKintosh model developed in the main text.
The linear force–extension relationship was found to result
in strain stiffening of the network, a consequence of fila-
ment rotation during network deformation. However, the
evolution in stiffness with strain differed from the behavior
seen in experiments, underscoring the need to also include
nonlinear force–extension relationships for actin filaments.

Using the eight-chain MacKintosh network constitutive
model, we examined the experimentally observed effects on
the network stress–strain behavior that occur from increas-
ing the actin concentration. The model’s shear stress–shear
strain response compares favorably with rheological data
at low (8 and 12 lM) and high (29 lM) actin concentra-
tions. The network model also exhibited good agreement
with the experimental tangent modulus–shear stress data
for cAF = 21 lM in both the low and high stress regions,
but not in the intermediate transition region. The experi-
mental 21 lM data was shown to exhibit an anomalous,
delayed transition to strain stiffening behavior in compari-
son to the other experimental concentration cases, which
explained its diverging behavior from the theoretical pre-
diction. The network model’s prediction for the transition
to strain stiffening behavior for the 21 lM case, however,
did coincide with the trend exhibited by the other experi-
mental concentration cases. The tangent shear moduli in
the nonlinear strain stiffening region, often difficult to
model, also correlate well with the data for all concentra-
tions. This suggests that the network model is effectively
simulating the cooperative network behavior and the
accommodation of the shear strain through chain rotation
and a small amount of end-to-end chain extension.

We parametrically varied the network prestress and net-
work bundling to quantify their influence on network
stress–strain behavior. Small increases in network prestress
(a) produced large increases in initial network stiffness (G0),
with a constant relation between tangent shear modulus
and shear stress for high stresses. We found an increase
in network stiffness by increasing lp,m, with excellent agree-
ment between experimentally bundled actin networks
(R = 0.5, cAF = 7 lM) and the corresponding modeled net-
works composed of three-filament bundles. The overall
constitutive framework enables predictions of large-strain
multi-axial deformation of 3-D isotropic F-actin filament
networks, and can be extended to model in vivo F-actin
networks or in vitro networks of other filaments once
updated with the proper material properties.

The proposed constitutive model provides a framework
for the strain energy formulation to be extended to include
the influence of cross-linking junction torsional potentials
as well as enthalpic contributions from direct axial stretch-
ing of filaments, which will enable a simplified model and a
future study on the tradeoffs between rotation vs. axial
stretching as a means of microstructurally accommodating
macroscopic deformation. The ability of the model to mon-
itor the force at the cross-link junctions can also be utilized
to explore effects of the rupture of cross-links at larger
strains. Furthermore, the model provides an initial frame-
work for including active remodeling of cytoskeletal net-
works, such as the actin network’s reformulation in
response to mechanical and chemical stimuli. A fully cou-
pled 3-D cytoskeletal network model could be integrated
with membrane and nucleus models in a finite element-
based micromechanical model of the cell which would pro-
vide the ability to assign and evolve mechanical properties
and filament concentrations as a function of location
within the cell. Enhancements such as these could eventu-
ally lead to a composite cellular microstructural model that
would enable detailed mechanical modeling of eukaryotic
cells under a wide variety of loading conditions encoun-
tered during both healthy and diseased cellular functions.
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Appendix A

A.1. Network stress–strain behavior using a nonlinear

MacKintosh model in comparison with using a linear model

for constituent filament force–extension behavior

Here we compare the network behavior obtained consid-
ering the constituent filaments to follow a linear force–
extension behavior with that obtained when the chains exhi-
bit the nonlinear force–extension behavior as represented in
the main text with the MacKintosh model. This comparison
will help highlight the source of nonlinearity in the network
stress–strain behavior arising from the evolution in struc-
ture geometry due to chain rotation from that arising due
to the nonlinearity of the filament behavior.

The force–extension relationship for the linear model is
shown below, where klin is the linear stiffness of the filament

F Linear ¼ klind ¼ klinðr � r0Þ ¼ klinr0ðkc � 1Þ ð14Þ
Fig. 13 compares the force—end-to-end distance and
force—stretch behaviors of the MacKintosh and linear
models using F-actin network properties (see Table 3 for
values and discussion), with r0 labeled for each model.
Note in Fig. 13b that MacKintosh response (with
r0 > rF=0) leads to an automatic chain pretension at r = r0

(kc = 1).
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Fig. 13. (a) Force vs. end-to-end distance and (b) force vs. chain stretch behavior of F-actin filaments using the linear and MacKintosh models.

Table 3
Network parameters and material properties (MacKintosh and linear
models)

MacKintosh Linear

n (filaments m�3) 1.2e19 1.2e19
Stiffness term lp = 3.0 lm klin = 40 lN m�1

Lc (lm) 1.07 1.07
r0 (lm) 1.03 1.03
rF=0 (lm) 1.00 1.03
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The expressions for the strain energy density of the
eight-filament cytoskeletal network models based on the
linear and MacKintosh model are

U Linear ¼ nklin

r2

2
� rr0 � c

� �
U Mac ¼

nkBT
lp

Lc

4ð1� r=LcÞ
� lp½lnðL2

c � 2lpLc þ 2lprÞ
�

� lnðr � LcÞ� � c
�
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Fig. 14. (a) Shear stress–strain and (b) tangent shear modulus–shear stress for
are from Ref. [22].
where c is a constant equal to the initial strain energy of the
filament. Following the derivation of the Cauchy stress–
strain relationship developed earlier for the MacKintosh
model, the corresponding Cauchy shear stress–strain rela-
tionships for the three single filament models become

sLinear ¼
nklinr2

0

3
1� 1

kc

� �
tan c

sMacðrÞ ¼
nkBT
3lp

r0

kc

1

4ð1� r=LcÞ2

 !

	 Lc=lp � 6ð1� r=LcÞ
Lc=lp � 2ð1� r=LcÞ

� �
tan c

ð16Þ
A.2. Comparison with representative low concentration case

The models were evaluated by comparing the data with
the lowest actin concentration (cAF = 8 lM and R = 0.03)
shown to exhibit network behavior [22]. The parameters
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in vitro F-actin networks (cAF = 8 lM, R = 0.03). The experimental data
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in Table 3 are used in the MacKintosh and linear network
models.

The stiffness-related term (lp or klin) and r0 (via a) are
chosen to best fit the models to the 8 lM experimental
data. The shear stress–strain results are shown in
Fig. 14a, with the tangent modulus–shear stress results
shown in Fig. 14b. If the linear stiffness is related to actin
filament geometry as klin ¼ AE=Lc ¼ ðAEIÞ=ðLcIÞ ¼
ð16lpkBT Þ=ðd2

AFLcÞ with dAF = 7 nm, then lp = 0.03 lm for
the best overall fit shown in Fig. 14a. This persistence
length value is two orders of magnitude lower than exper-
imentally observed F-actin values (lp � 3–17 lm).

Note that the network with linear filaments exhibits a
nonlinear network shear stress–shear strain behavior in
Fig. 14a due to the filament rotation effects [34]. The linear
model, however, captures neither the shear stress–strain
nor the tangent modulus–stress behavior of the actin net-
work, emphasizing the importance of using a nonlinear
force–extension relationship for single F-actin filaments.
The tangent modulus–stress response of the MacKintosh
0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3

Shear Strain

S
h

ea
r 

S
tr

es
s 

[P
a]

Experiment

Model (lp=3µm, Lc=1.0µm)

Model (lp=10µm, Lc=2.8µm)

Model (lp=17µm, Lc=4.3µm)

a
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Fig. 16. (a) Shear stress–shear strain and (b) tangent shear modulus–shear st
lengths lp = 3, 10, 17 lm (cAF = 8 lM, R = 0.03), varying Lc and a for best fi
model, when used in an eight-chain network, closely
matches the predictions given by Gardel et al. [22], with a
good fit at low stresses as well as in the strain stiffening
region at higher stresses (Fig. 14b). The eight-chain Mac-
Kintosh network model, because of its superior perfor-
mance when compared with experimental data, was chosen
for further comparison with actin networks at varying con-
centrations in the main text.

Appendix B

B.1. Network model performance with varying persistence

length

Here we address the network model’s ability to fit exper-
imental data over a range of persistence lengths. As men-
tioned in the main text, there is a range of published
values and testing methods for persistence lengths of
in vitro actin filaments (lp � 3–17 lm). We compare the
model’s behavior for lp = 3, 10, 17 lm (cAF = 8.33 lM,
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R = 0.03) by only varying Lc to obtain a best fit to the ini-
tial shear modulus (see Fig. 15).

In order to obtain a best fit to the data, an increase in
the persistence length to 10 or 17 lm requires the con-
tour length to be increased to Lc = 2.8, 4.3 lm, respec-
tively, both of which are beyond experimentally
observed values (i.e. Lc � 1 lm). Note that while the fit
appears good in the tangent modulus–shear stress plot
(with log–log axes) in Fig. 15b, the shear stress–strain
plot in Fig. 15a reveals divergent behavior in the nonlin-
ear strain stiffening region for larger persistence lengths.
A better overall fit can be obtained by varying a as well
as Lc, as seen in Fig. 16.

Decreasing a while holding the contour lengths constant
(from Fig. 15) gives a better fit in the strain stiffening region
at the expense of a poorer fit to the initial shear modulus.
The model’s performance with higher persistence lengths,
however, still does not achieve as good of a fit to the
8.33 lM data as with the lp = 3 lm. The persistence length
has a significant effect on the transition to the strain stiffen-
ing region as the bends in the filaments are straightened
out, which enables a better fit of the more compliant
actin–scruin filaments with the lower value of lp. Since
the best fit was obtained with lp = 3 lm and a realistic con-
tour length of Lc = 1.0 lm, these values were used for fur-
ther comparison in the main text.
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